Example 1
Completion requirements
Example 1 |
Simplify \(\frac{3}{{\sqrt 3 - \sqrt 6 }}\).
Step 1: Determine the conjugate of the denominator.
The conjugate of the denominator is \(\sqrt 3 + \sqrt 6 \).
Step 2: Rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator, and then simplify.
\(\begin{align}
\frac{3}{{\sqrt 3 - \sqrt 6 }} &= \frac{3}{{\left( {\sqrt 3 - \sqrt 6 } \right)}}\cdot \frac{{\left( {\sqrt 3 + \sqrt 6 } \right)}}{{\left( {\sqrt 3 + \sqrt 6 } \right)}} \\
&= \frac{{3\left( {\sqrt 3 + \sqrt 6 } \right)}}{{\left( {\sqrt 3 - \sqrt 6 } \right)\left( {\sqrt 3 + \sqrt 6 } \right)}} \\
&= \frac{{3\left( {\sqrt 3 + \sqrt 6 } \right)}}{{\sqrt {3^2 } {\cancel{ +\sqrt 3 \cdot \sqrt 6}}{\cancel {-\sqrt 3 \cdot \sqrt 6}} - \sqrt {6^2 } }} \\
&= \frac{{3\left( {\sqrt 3 + \sqrt 6 } \right)}}{{\sqrt {3^2 } - \sqrt {6^2 } }} \\
&= \frac{{3\left( {\sqrt 3 + \sqrt 6 } \right)}}{{3 - 6}} \\
&= \frac{{3\left( {\sqrt 3 + \sqrt 6 } \right)}}{{ - 3}} \\
&= - \left( {\sqrt 3 + \sqrt 6 } \right) \\
&= - \sqrt 3 - \sqrt 6 \\
\end{align}\)
The conjugate of the denominator is \(\sqrt 3 + \sqrt 6 \).
Step 2: Rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator, and then simplify.
\(\begin{align}
\frac{3}{{\sqrt 3 - \sqrt 6 }} &= \frac{3}{{\left( {\sqrt 3 - \sqrt 6 } \right)}}\cdot \frac{{\left( {\sqrt 3 + \sqrt 6 } \right)}}{{\left( {\sqrt 3 + \sqrt 6 } \right)}} \\
&= \frac{{3\left( {\sqrt 3 + \sqrt 6 } \right)}}{{\left( {\sqrt 3 - \sqrt 6 } \right)\left( {\sqrt 3 + \sqrt 6 } \right)}} \\
&= \frac{{3\left( {\sqrt 3 + \sqrt 6 } \right)}}{{\sqrt {3^2 } {\cancel{ +\sqrt 3 \cdot \sqrt 6}}{\cancel {-\sqrt 3 \cdot \sqrt 6}} - \sqrt {6^2 } }} \\
&= \frac{{3\left( {\sqrt 3 + \sqrt 6 } \right)}}{{\sqrt {3^2 } - \sqrt {6^2 } }} \\
&= \frac{{3\left( {\sqrt 3 + \sqrt 6 } \right)}}{{3 - 6}} \\
&= \frac{{3\left( {\sqrt 3 + \sqrt 6 } \right)}}{{ - 3}} \\
&= - \left( {\sqrt 3 + \sqrt 6 } \right) \\
&= - \sqrt 3 - \sqrt 6 \\
\end{align}\)