Example  2


 Multimedia


Simplify \(\frac{{2 - \sqrt 5 }}{{3\sqrt {7p} + 2\sqrt 2 }}, p > 0\).

Step 1: Determine the conjugate of the denominator.

The conjugate of the denominator of this example is \(3\sqrt {7p} - 2\sqrt 2 \).

Step 2: Rationalize the denominator by multiplying numerator and denominator by the conjugate of the denominator, and then simplify.

\(\begin{align}
 \frac{{2 - \sqrt 5 }}{{3\sqrt {7p} + 2\sqrt 2 }} &= \frac{{\left( {2 - \sqrt 5 } \right)}}{{\left( {3\sqrt {7p} + 2\sqrt 2 } \right)}}\cdot \frac{{\left( {3\sqrt {7p} - 2\sqrt 2 } \right)}}{{\left( {3\sqrt {7p} - 2\sqrt 2 } \right)}} \\ 
  &= \frac{{\left( {2 - \sqrt 5 } \right)\left( {3\sqrt {7p} - 2\sqrt 2 } \right)}}{{\left( {3\sqrt {7p} + 2\sqrt 2 } \right)\left( {3\sqrt {7p} - 2\sqrt 2 } \right)}} \\ 
  &= \frac{{\left( {2 - \sqrt 5 } \right)\left( {3\sqrt {7p} - 2\sqrt 2 } \right)}}{{\left( {3\sqrt {7p} } \right)^2 - \left( {2\sqrt 2 } \right)^2 }} \\ 
  &= \frac{{6\sqrt {7p} - 4\sqrt 2 - 3\sqrt {35p}  + 2\sqrt {10} }}{{9\left( {7p} \right) - 4\left( 2 \right)}} \\ 
  &= \frac{{6\sqrt {7p} - 4\sqrt 2 - 3\sqrt {35p}  + 2\sqrt {10} }}{{63p - 8}} \\ 
 \end{align}\)
 

Watch the coefficients in front of the square roots of the denominator. They must be squared as well!