Simplify the following expressions.

  1. \(\frac{2}{{3\sqrt {5t} - 4}}, t > 0\)

  2. The conjugate is \(3\sqrt {5t}  + 4\).

    \(\begin{align}
     \frac{2}{{\left( {3\sqrt {5t} - 4} \right)}}\cdot \frac{{\left( {3\sqrt {5t} + 4} \right)}}{{\left( {3\sqrt {5t} + 4} \right)}} &= \frac{{6\sqrt {5t} + 8}}{{\left( {3\sqrt {5t} } \right)^2 - 4^2 }} \\
      &= \frac{{6\sqrt {5t} + 8}}{{9\left( {5t} \right) - 16}} \\
      &= \frac{{6\sqrt {5t} + 8}}{{45t - 16}},{\rm{ }}t > 0 \\
     \end{align}\)



  3. \(\frac{{3\sqrt 2 }}{{2\sqrt 5 + 4\sqrt 3 }}\)

    The conjugate is \(2\sqrt 5 - 4\sqrt 3 \).

    \(\begin{align}
     \frac{{3\sqrt 2 }}{{\left( {2\sqrt 5 + 4\sqrt 3 } \right)}}\cdot \frac{{\left( {2\sqrt 5 - 4\sqrt 3 } \right)}}{{\left( {2\sqrt 5 - 4\sqrt 3 } \right)}} &= \frac{{6\sqrt {10} - 12\sqrt 6 }}{{\left( {2\sqrt 5 } \right)^2 - \left( {4\sqrt 3 } \right)^2 }} \\
      &= \frac{{6\sqrt {10} - 12\sqrt 6 }}{{4\left( 5 \right) - 16\left( 3 \right)}} \\
      &= \frac{{6\sqrt {10} - 12\sqrt 6 }}{{20 - 48}} \\
      &= \frac{{6\sqrt {10} - 12\sqrt 6 }}{{ - 28}} \\
      &= \frac{{6\sqrt 6 - 3\sqrt {10} }}{{14}} \\
     \end{align}\)



For further information about rationalizing the denominator, see pp. 287 – 288 of Pre-Calculus 11.