Example  3

Solve \(\sqrt {2x - 4} = 6\).

Step 1: Identify any restrictions on the variable.

\(\begin{align}
 2x - 4 &\ge 0 \\ 
 2x &\ge 4 \\ 
 x &\ge 2, x \in \rm R \\ 
 \end{align}\)


Step 2: Raise both sides of the equation to the exponent of two, and solve the equation.

\(\begin{align}
 \sqrt {2x - 4} &= 6 \\ 
 \left( {\sqrt {2x - 4} } \right)^2 &= 6^2  \\ 
 2x - 4 &= 36 \\ 
 2x &= 40 \\ 
 x &= 20 \\ 
 \end{align}\)


The solution is within the variable’s restrictions.

Step 3
: Verify the solution.

Left Side 
Right Side 
\(\begin{array}{r}
 \sqrt {2x - 4}  \\ 
 \sqrt {2\left( {20} \right) - 4}  \\ 
 \sqrt {40 - 4}  \\ 
 \sqrt {36}  \\ 
 6 \\  \end{array}\)

\(6\)
LS = RS \(\hspace{30pt}\)


The solution is \(x = 20\).