Example  4

Solve \(\sqrt[3]{{3r - 2}} = 4\).

Step 1: Identify any restrictions on the variable.

Because the index is \(3\) (odd), there are no restrictions on the variable, \(r \in \rm R\).

Step 2: Raise both sides of the equation to the power of the index in order to remove the radical.

\(\begin{align}
 \sqrt[3]{{3r - 2}} &= 4 \\ 
 \left( {\sqrt[3]{{3r - 2}}} \right)^3 &= 4^3  \\ 
 3r - 2 &= 64 \\ 
 \end{align}\)


Step 3
: Solve for the variable.

\(\begin{align}
 3r - 2 &= 64 \\ 
 3r &= 66 \\ 
 r &= 22 \\ 
 \end{align}\)


Step 4
: Verify the solution.

Left Side 
Right Side 
\(\begin{array}{r}
 \sqrt[3]{{3r - 2}} \\ 
 \sqrt[3]{{3\left( {22} \right) - 2}} \\ 
 \sqrt[3]{{66 - 2}} \\ 
 \sqrt[3]{{64}} \\ 
 4 \\ 
 \end{array}\)

\(4\)
LS = RS \(\hspace{30pt}\)

The solution is \(r = 22\).