Example  5


Solve \(\sqrt {x - 5} + 5 = 4\).

Step 1: Identify any restrictions on the variable.

Only the radicand is restricted; therefore \(x - 5 \ge 0\), or \(x \ge 5, x \in \rm R\).

Step 2: Isolate the radical.

\(\begin{align}
 \sqrt {x - 5} + 5 &= 4 \\ 
 \sqrt {x - 5} &= -1 \\ 
 \end{align}\)


Step 3: Raise both sides of the equation to the power of the index in order to remove the radical, and then solve for the variable.

\(\begin{align}
 \sqrt {x - 5} &= -1 \\ 
 \left( {\sqrt {x - 5} } \right)^2 &= \left( { - 1} \right)^2  \\ 
 x - 5 &= 1 \\ 
 x &= 6 \\ 
 \end{align}\)


The solution is within the variable’s restrictions.

Step 4: Verify the solution.

Left Side 
Right Side 
\( \begin{array}{r}
\sqrt {x - 5} + 5 \\ 
 \sqrt {6 - 5} + 5 \\ 
 \sqrt 1 + 5 \\ 
 1 + 5 \\ 
 6 \\ 
 \end{array}\)

\(4\)
LS \(\ne\) RS \(\hspace{30pt}\)

Because the left side does not equal the right side, \(x = 6\) does not satisfy the equation and is considered an extraneous root. There is no solution to this equation.