Solve the following equations.

  1. \(\sqrt {3x + 2} + 6 = 4\)

    \(\begin{align}
     3x + 2 &\ge 0 \\
     3x &\ge - 2 \\
     x &\ge - \frac{2}{3}, x \in \rm R \\
     \end{align}\)


    \(\begin{align}
     \sqrt {3x + 2} + 6 &= 4 \\
     \sqrt {3x + 2} &= -2 \\
     \left( {\sqrt {3x + 2} } \right)^2 &= \left( { - 2} \right)^2  \\
     3x + 2 &= 4 \\
     3x &= 2 \\
     x &= \frac{2}{3} \\
     \end{align}\)


    The solution is within the variableโ€™s restrictions.

    Verify:

    Left Side
    Right Side
    \(\begin{array}{r}
     \sqrt {3x + 2} + 6 \\
     \sqrt {3\left( {\frac{2}{3}} \right) + 2} + 6 \\
     \sqrt {2 + 2} + 6 \\
     \sqrt 4 + 6 \\
     2 + 6 \\
     8 \\
     \end{array}\)

    \(4\)
    LS \(\ne\) RS \(\hspace{30pt}\)


    Because the left side does not equal the right side, \(x = \frac{2}{3}\) does not satisfy the equation and is considered an extraneous root. There is no solution to this equation.


  2. \(\sqrt[4]{{r - 5}} = 3\)

    \(\begin{align}
     r - 5 &\ge 0 \\
     r &\ge 5, r \in \rm R \\
     \end{align}\)


    \(\begin{align}
     \sqrt[4]{{r - 5}} &= 3 \\
     \left( {\sqrt[4]{{r - 5}}} \right)^4 &= 3^4  \\
     r - 5 &= 81 \\
     r &= 86 \\
     \end{align}\)


    The solution is within the variableโ€™s restrictions.

    Verify:

    Left Side
    Right Side
    \(\begin{array}{r}
     \sqrt[4]{{r - 5}} \\
     \sqrt[4]{{86 - 5}} \\
     \sqrt[4]{{81}} \\
     3 \\
     \end{array}\)

    \(3\)
    LS = RS

    The solution is \(r = 86\).