Compare Your Answers
Completion requirements
Solve the following equations.
-
\(\sqrt {3x + 2} + 6 = 4\)\(\begin{align}
3x + 2 &\ge 0 \\
3x &\ge - 2 \\
x &\ge - \frac{2}{3}, x \in \rm R \\
\end{align}\)
\(\begin{align}
\sqrt {3x + 2} + 6 &= 4 \\
\sqrt {3x + 2} &= -2 \\
\left( {\sqrt {3x + 2} } \right)^2 &= \left( { - 2} \right)^2 \\
3x + 2 &= 4 \\
3x &= 2 \\
x &= \frac{2}{3} \\
\end{align}\)
The solution is within the variableโs restrictions.
Verify:
Left Side
Right Side
\(\begin{array}{r}
\sqrt {3x + 2} + 6 \\
\sqrt {3\left( {\frac{2}{3}} \right) + 2} + 6 \\
\sqrt {2 + 2} + 6 \\
\sqrt 4 + 6 \\
2 + 6 \\
8 \\
\end{array}\)
\(4\) LS \(\ne\) RS \(\hspace{30pt}\)
Because the left side does not equal the right side, \(x = \frac{2}{3}\) does not satisfy the equation and is considered an extraneous root. There is no solution to this equation. - \(\sqrt[4]{{r - 5}} = 3\)\(\begin{align}
r - 5 &\ge 0 \\
r &\ge 5, r \in \rm R \\
\end{align}\)
\(\begin{align}
\sqrt[4]{{r - 5}} &= 3 \\
\left( {\sqrt[4]{{r - 5}}} \right)^4 &= 3^4 \\
r - 5 &= 81 \\
r &= 86 \\
\end{align}\)
The solution is within the variableโs restrictions.
Verify:
Left Side
Right Side
\(\begin{array}{r}
\sqrt[4]{{r - 5}} \\
\sqrt[4]{{86 - 5}} \\
\sqrt[4]{{81}} \\
3 \\
\end{array}\)
\(3\) LS = RS
The solution is \(r = 86\).