Solve \(\sqrt {3 + j} = 2\sqrt j - 3\).  Indicate any restrictions on the variable.  Round to the nearest hundredth.

\(\begin{align}
 3 + j &\ge 0 \\
 j &\ge - 3 \\
 \end{align}\)
\(j \ge 0 \)

Therefore, the restriction on the variable is \(j \ge 0, j \in \rm R\).

\(\begin{align}
 \sqrt {3 + j} &= 2\sqrt j - 3 \\
 \left( {\sqrt {3 + j} } \right)^2 &= \left( {2\sqrt j - 3} \right)^2  \\
 3 + j &= 4j - 12\sqrt j + 9 \\
 12\sqrt j &= 3j + 6 \\
 4\sqrt j &= j + 2 \\
 \left( {4\sqrt j } \right)^2 &= \left( {j + 2} \right)^2  \\
 16j &= j^2 + 4j + 4 \\
 0 &= j^2 - 12j + 4 \\
 \end{align}\)

\[\begin{align}
 a &=1, b = -12, c = 4 \\
\\
 j &= \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}} \\
 j &= \frac{{12 \pm \sqrt {\left( { - 12} \right)^2 - 4\left( 1 \right)\left( 4 \right)} }}{{2\left( 1 \right)}} \\
 j &= \frac{{12 \pm \sqrt {144 - 16} }}{2} \\
 j &= \frac{{12 \pm \sqrt {128} }}{2} \\
 j &= \frac{{12 \pm 8\sqrt 2 }}{2} \\
 j &= 6 \pm 4\sqrt 2  \\
 \end{align}\]
\(\begin{align}
 j &= 6 + 4\sqrt 2 = 11.656... \doteq 11.66 \\
 j &= 6 - 4\sqrt 2 = 0.343... \doteq 0.34 \\
 \end{align}\)


Verify:

\(j = 6 + 4\sqrt 2 \)

Left Side
Right Side
\(\begin{array}{r}
 \sqrt {3 + j}  \\
 \sqrt {3 + 6 + 4\sqrt 2 }  \\
 \sqrt {9 + 4\sqrt 2 }  \\
 3.828... \\
 \end{array}\)

\(\begin{array}
 2\sqrt j - 3 \\
 2\sqrt {6 + 4\sqrt 2 } - 3 \\
 3.828... \\
 \end{array}\)

LS = RS

\(j = 6 - 4\sqrt 2 \)

Left Side
Right Side
\(\begin{array}{r}
 \sqrt {3 + j}  \\
 \sqrt {3 + 6 - 4\sqrt 2 }  \\
 \sqrt {9 - 4\sqrt 2 }  \\
 1.828... \\
 \end{array}\)

\(\begin{array}
 2\sqrt j - 3 \\
 2\sqrt {6 - 4\sqrt 2 } - 3 \\
  - 1.828... \\
 \end{array}\)
LS \(\ne\) RS

This is an extraneous root.
The solution is \(j \doteq 11.66\).


For further information about solving radical equations, see pp. 296 – 299 of Pre-Calculus 11.