Example  3


 Multimedia

(Video in Development)

The volume of canola piled on the ground in the shape of a cone is \(2\thinspace 000 \thinspace \rm {ft}^3\). The height of the pile is \(30 \thinspace \rm{ft}\). How wide is the base of the pile, given the formula for the volume of a cone is \(V = \frac{1}{3}\pi r^2h\)? Round to the nearest foot.

Step 1: Write down what you are given.

\(\begin{align}
 V &= 2\thinspace 000 \thinspace {\rm{ ft}}^3  \\ 
 h &= 30 \thinspace {\rm{ ft}} \\ 
 r &= ? \\ 
 \end{align}\)


Step 2: Substitute given values into the formula, and solve for \(r\).

\(\begin{align}
 V &= \frac{1}{3}\pi r^2 h \\ 
 2\thinspace 000 &= \frac{1}{3}\pi r^2 \left( {30} \right) \\ 
 2\thinspace 000 &= 10\pi r^2  \\ 
 \frac{{200}}{\pi } &= r^2  \\ 
  \pm \sqrt {\frac{{200}}{\pi }} &= r \\ 
  \pm 7.978... &= r \\ 
 \end{align}\)


Because width cannot be negative, you can ignore the negative solution value.

Step 3: Determine the width of the pile.

To find the width, multiply the radius by two.

width = \(2(7.978...) = 15.957...\)

The width of the base of the pile is approximately \(16 \rm \thinspace {ft}\).