Compare Your Answers
Completion requirements
-
Determine the reference angle for each angle in standard position.
-
\(166^\circ\)
Because this angle is less than \(180^\circ\) and more than \(90^\circ\) , it terminates in Quadrant II.
The reference angle is:
\(\begin{align}
\theta _R &= 180^\circ - \theta \\
\theta _R &= 180^\circ - 166^\circ \\
\theta _R &= 14^\circ \\
\end{align}\)
-
\(250^\circ\)
Because this angle is less than \(270^\circ\) and more than \(180^\circ\) , it terminates in Quadrant III.
The reference angle is:
\(\begin{align}
\theta _R &= \theta - 180^\circ \\
\theta _R &= 250^\circ - 180^\circ \\
\theta _R &= 70^\circ \\
\end{align}\)
-
Determine all the angles in standard position, for \(0^\circ \le
\theta < 360^\circ \), that have a reference angle of \(15^\circ\).
Quadrant I: \(\theta _R = \theta \)
\(\begin{align}
\theta _R &= \theta \\
15^\circ &= \theta \\
\end{align}\)Quadrant III: \(\theta _R = \theta - 180^\circ \)
\(\begin{align}
\theta _R &= \theta - 180^\circ \\
15^\circ &= \theta - 180^\circ \\
195^\circ &= \theta \\
\end{align}\)Quadrant II: \(\theta _R = 180^\circ - \theta \)
\(\begin{align}
\theta _R &= 180^\circ - \theta \\
15^\circ &= 180^\circ - \theta \\
-165^\circ &= - \theta \\
165^\circ &= \theta \\
\end{align}\)Quadrant IV: \(\theta _R = 360^\circ - \theta \)
\(\begin{align}
\theta _R &= 360^\circ - \theta \\
15^\circ &= 360^\circ - \theta \\
-345^\circ &= - \theta \\
345^\circ &= \theta \\
\end{align}\)