Compare Your Answers
Completion requirements
-
What similarities do you notice between the sine and cosine values for \(30^\circ\), \(45^\circ\), and \(60^\circ\)?
sin \(30^\circ\) = cos \(60^\circ\) and sin \(60^\circ\) = cos \(30^\circ\)
sin \(45^\circ\) = cos \(45^\circ\)
-
What similarities do you notice between the tangent values for \(30^\circ\) and \(60^\circ\)?
The numerator and denominator values have switched places.
-
BONUS:
What do you notice when you divide sin \(\theta\) by cos \(\theta\)?
Compare the result to tan \(\theta\) for \(30^\circ\), \(45^\circ\), and
\(60^\circ\).
\(\begin{align}
\sin 30^ \circ \div \cos 30^ \circ &= \frac{1}{2} \div \frac{{\sqrt 3 }}{2} \\
&= \frac{1}{2} \cdot \frac{2}{{\sqrt 3 }} \\
&= \frac{1}{{\sqrt 3 }} \\
&= \frac{{\sqrt 3 }}{3} \\
&= \tan 30^ \circ \\
\tan 30^ \circ &= \sin 30^ \circ \div \cos 30^ \circ \\
\end{align}\)
\(\begin{align}
\sin 45^ \circ \div \cos 45^ \circ &= \frac{{\sqrt 2 }}{2} \div \frac{{\sqrt 2 }}{2} \\
&= \frac{{\sqrt 2 }}{2} \cdot \frac{2}{{\sqrt 2 }} \\
&= \frac{{2\sqrt 2 }}{{2\sqrt 2 }} \\
&= 1 \\
&= \tan 45^ \circ \\
\tan 45^ \circ &= \sin 45^ \circ \div \cos 45^ \circ \\
\end{align}\)
\[\begin{align}
\sin 60^ \circ \div \cos 60^ \circ &= \frac{{\sqrt 3 }}{2} \div \frac{1}{2} \\
&= \frac{{\sqrt 3 }}{2} \cdot \frac{2}{1} \\
&= \frac{{2\sqrt 3 }}{2} \\
&= \sqrt 3 \\
&= \tan 60^ \circ \\
\tan 60^ \circ &= \sin 60^ \circ \div \cos 60^ \circ \\
\end{align}\]
Therefore, \(\tan \theta = \sin \theta \div \cos \theta \) or \({\rm{tan}}\theta = \frac{{\sin \theta }}{{\cos \theta }}\).