Example 2
Completion requirements
Example 2 |
Determine the distance from point \(Q(-2, 7)\) to the origin. Round to the nearest hundredth.
Draw a sketch of the point and the right triangle constructed by drawing a vertical line from the point to the \(x\)-axis.


Then, calculate the length of \(r\).
\(\begin{align}
r &= \sqrt {\left( {x^2 + y^2 } \right)} \\
r &= \sqrt {\left( {\left( -2 \right)^2 + \left( 7 \right)^2 } \right)} \\
r &= \sqrt {4 + 49} \\
r &= \sqrt {53} \\
r &= 7.280... \\
r &\doteq 7.28 \\
\end{align}\)
\(\begin{align}
r &= \sqrt {\left( {x^2 + y^2 } \right)} \\
r &= \sqrt {\left( {\left( -2 \right)^2 + \left( 7 \right)^2 } \right)} \\
r &= \sqrt {4 + 49} \\
r &= \sqrt {53} \\
r &= 7.280... \\
r &\doteq 7.28 \\
\end{align}\)