Example  2

Determine the distance from point \(Q(-2, 7)\) to the origin. Round to the nearest hundredth.

Draw a sketch of the point and the right triangle constructed by drawing a vertical line from the point to the \(x\)-axis.

Then, calculate the length of \(r\).

\(\begin{align}
 r &= \sqrt {\left( {x^2 + y^2 } \right)}  \\
 r &= \sqrt {\left( {\left( -2 \right)^2 + \left( 7 \right)^2 } \right)}  \\
 r &= \sqrt {4 + 49}  \\
 r &= \sqrt {53}  \\
 r &= 7.280... \\
 r &\doteq 7.28 \\
 \end{align}\)