Example  1

The point \((-3, 4)\) lies on the terminal arm of an angle in standard position. Determine the primary trigonometric ratios for the angle. Round your answers to the nearest tenth.

Step 1: Sketch the angle and reference triangle.



Step 2: Calculate the length of the line segment between the point and the origin.

\(\begin{align}
 r &= \sqrt {\left( {x^2 + y^2 } \right)}  \\
 r &= \sqrt {\left( {\left( -3 \right)^2 + \left( 4 \right)^2 } \right)}  \\
 r &= \sqrt {9 + 16}  \\
 r &= \sqrt {25}  \\
 r &= 5 \\
 \end{align}\)


Step 3: Determine the primary trigonometric ratios for the angle, using the reference triangle.

\(\begin{align}
 \sin \theta &= \frac{y}{r} \\
 \sin \theta &= \frac{4}{5} \\
 \sin \theta &= 0.8 \\
 \end{align}\)

\(\begin{align}
 \cos \theta &= \frac{x}{r} \\
 \cos \theta &= \frac{{ -3}}{5} \\
 \cos \theta &= -0.6 \\   
 \end{align}\)

\(\begin{align}
 \tan \theta &= \frac{y}{x} \\
 \tan \theta &= \frac{4}{{ - 3}} \\
 \tan \theta &\doteq -1.3  \\
 \end{align}\)