Example  3

Determine the exact values of the trigonometric ratios for the angle \(210^\circ\).



Step 1
: Determine the reference angle, \(\theta_R\).

The angle \(210^\circ\) terminates in Quadrant III because it is greater than \(180^\circ\) and less than \(270^\circ\). To find the reference angle, subtract \(180^\circ\) from \(210^\circ\).

\(\begin{align}
 \theta - 180^\circ &= \theta _R  \\
 210^\circ - 180^\circ &= \theta _R  \\
 30^\circ &= \theta _R  \\
 \end{align}\)


Step 2
: Determine which ratios are positive and which are negative in Quadrant III.

Using CAST, only tangent is positive in Quadrant III.

Step 3: Using the reference angle, determine the exact values for the angle.

Referring to the special right triangle with an angle of \(30^\circ\), the primary trigonometric ratios for \(30^\circ\) are:

\(\begin{align}
 \sin 30^\circ &= \frac{1}{2} \\
 \cos 30^\circ &= \frac{{\sqrt 3 }}{2} \\
 \tan 30^\circ &= \frac{{\sqrt 3 }}{3} \\
 \end{align}\)


To determine the exact values for the angle \(210^\circ\), apply the CAST rule.

\(\begin{align}
 \sin 30^\circ &= -\frac{1}{2} \\
 \cos 30^\circ &= -\frac{{\sqrt 3 }}{2} \\
 \tan 30^\circ &= \frac{{\sqrt 3 }}{3} \\
 \end{align}\)