Determine the exact values of the trigonometric ratios for the angle \(135^\circ\).

Reference angle:

\(\begin{align}
 \theta _R &= 180^\circ - \theta  \\
 \theta _R &= 180^\circ - 135^\circ  \\
 \theta _R &= 45^\circ  \\
 \end{align}\)


Use the exact values generated by the \(45^\circ - 45^\circ - 90^\circ\) special triangle. Because this angle terminates in Quadrant II, only sin \(\theta\) is positive.

\(x = -1\)
\(y = 1\)
\(r = \sqrt{2}\)

\(\begin{align}
 \sin 135^\circ &= \frac{1}{{\sqrt 2 }} \cdot \frac{{\sqrt 2 }}{{\sqrt 2 }} \\
 &= \frac{{\sqrt 2 }}{2} \\
 \end{align}\)


\(\begin{align}
 \cos 135^\circ &= \frac{{ - 1}}{{\sqrt 2 }} \cdot \frac{{\sqrt 2 }}{{\sqrt 2 }} \\
 &= - \frac{{\sqrt 2 }}{2} \\
 \end{align}\)


\(\begin{align}
 \tan 135^\circ &= \frac{1}{{-1}} \\
  &= -1 \\
 \end{align}\)