Example  4

A grandfather clock’s pendulum has a circular weight with a radius of \(5\) cm, and moves from an angle of \(265^\circ\) to \(275^\circ\). If the pendulum is \(1\) metre in length, what is the minimum width the base of the clock must be? Round to the nearest hundredth of a metre.


Step 1: Draw a diagram.

Calculate the reference angle for both \(265^\circ\) and \(275^\circ\).

\(\begin{align}
 \theta _R &= \theta - 180^\circ  \\
 \theta _R &= 265^\circ - 180^\circ  \\
 \theta _R &= 85^\circ  \\
 \end{align}\)
\(\begin{align}
 \theta _R &= 360^\circ - \theta  \\
 \theta _R &= 360^\circ - 275^\circ  \\
 \theta _R &= 85^\circ  \\
 \end{align}\)


Step 2: Determine the value of \(x\) using the reference angle.

\(\begin{align}
\theta_R &= 85^\circ \\
\rm{adj} &= \frac{x}{2} \\
\rm{hyp} &= 1 \rm \thinspace m\\
\end{align}\)


\(\begin{align}
 \cos \theta &= \frac{{{\mathop{\rm adj}\nolimits} }}{{{\mathop{\rm hyp}\nolimits} }} \\
 \cos 85^\circ &= \frac{{\left( {\frac{x}{2}} \right)}}{1} \\
 \cos 85^\circ &= \frac{x}{2} \\
 2\cos 85^\circ &= x \\
 0.174... &= x \\
 \end{align}\)


Step 3
: Add the width of the pendulum weight.

The radius is \(5\) cm; therefore \(0.05\) m must be added to each side of the swing, or \(0.10\) m total.

\(\begin{align}
 0.174... + 0.10 &= 0.274... \\
  &\doteq 0.27{\rm{ m}} \\
 \end{align}\)


The base of the clock must be at least \(0.27\) m wide.