The arm of a picker truck has a maximum extension of \(6\) m. Determine the exact horizontal distance the bucket of the picker truck moves as it moves from an angle of elevation of \(30^\circ\) to \(45^\circ\).



A diagram:

\(\begin{align}
 \cos \theta &= \frac{{{\mathop{\rm adj}\nolimits} }}{{{\mathop{\rm hyp}\nolimits} }} \\
 \cos 30^\circ &= \frac{{h_1 }}{6} \\
 \frac{{\sqrt 3 }}{2} &= \frac{{h_1 }}{6} \\
 3\sqrt 3 &= h_1  \\
 \end{align}\)
\(\begin{align}
 \cos \theta &= \frac{{{\mathop{\rm adj}\nolimits} }}{{{\mathop{\rm hyp}\nolimits} }} \\
 \cos 45^\circ &= \frac{{h_2 }}{6} \\
 \frac{{\sqrt 2 }}{2} &= \frac{{h_2 }}{6} \\
 3\sqrt 2 &= h_2  \\
 \end{align}\)
Determine the horizontal distance moved by the bucket.

\(\begin{align}
 h &= h_1 - h_2  \\
 h &= 3\sqrt 3 - 3\sqrt 2  \\
 \end{align}\)


The horizontal distance moved by the bucket is \(3\sqrt{3} - 3\sqrt{2} \rm \thinspace m\).