Example  5


 

 Multimedia


Given sin \(\theta = \frac{5}{6}\) and \(\theta\) is an angle in standard position that terminates in Quadrant II, determine the exact values of cos \(\theta\) and tan \(\theta\).

Step 1: Sketch the angle and reference triangle.



Step 2: Determine the value of \(x\).

\(\begin{align}
 r^2 &= x^2 + y^2  \\
 \left( 6 \right)^2 &= x^2 + \left( 5 \right)^2  \\
 36 &= x^2 + 25 \\
 11 &= x^2  \\
  \pm \sqrt {11}  &= x \\
 \end{align}\)


Because the terminal arm is in Quadrant II, the \(x\)-value is negative; therefore, \(x = -\sqrt{11}\).

Step 3: Determine the exact values of cos \(\theta\) and tan \(\theta\).

\(\begin{align}
 x &= -\sqrt{11} \\
 y &= 5 \\
 r &= 6 \\
\end{align}\)


\(\begin{align}
 \cos \theta &= \frac{x}{r} \\
 &= \frac{{ - \sqrt {11} }}{6} \\
 &= - \frac{{\sqrt {11} }}{6} \\
 \tan \theta &= \frac{y}{x} \\
 &= \frac{5}{{ - \sqrt {11} }} \cdot \frac{{\sqrt {11} }}{{\sqrt {11} }} \\
 &= - \frac{{5\sqrt {11} }}{{11}} \\
 \end{align}\)