Suppose \(\theta\) is an angle in standard position with terminal arm in Quadrant III. Determine the exact values of \(\rm{sin} \thinspace \theta\) and \(\rm{tan} \thinspace \theta\), given \(\rm{cos} \thinspace \theta = -\frac{2}{5}\).


\(\begin{align}
 r^2 &= x^2 + y^2  \\
 \left( 5 \right)^2 &= \left( { - 2} \right)^2 + y^2  \\
 25 &= 4 + y^2  \\
 21 &= y^2  \\
  \pm \sqrt {21} &= y \\
 \end{align} \)


Because this angle terminates in Quadrant III, \(y = -\sqrt{21}\).

\(\begin{align}
 \sin \theta &= \frac{y}{r} \\
 \sin \theta &= \frac{{ - \sqrt {21} }}{5} \\
 \end{align}\)


\(\begin{align}
 \tan \theta &= \frac{y}{x} \\
 \tan \theta &= \frac{{ - \sqrt {21} }}{{ - 2}} \\
 \tan \theta &= \frac{{\sqrt {21} }}{2} \\
 \end{align}\)