Example  2

Solve for \(\theta\), given sin \(\theta = -0.819152\), where \(0^\circ \le \theta < 360^\circ\). Round to the nearest tenth of a degree.

Step 1: Determine in which quadrant(s) the solution(s) will lie.

Recall that sin \(\theta\) is negative in Quadrants III and IV.

Step 2: Determine the reference angle.

Always use the positive value of the ratio to determine the reference angle!

\(\begin{align}
 \sin \theta &= 0.819152 \\
 \theta &= \sin ^{ - 1} \left( {0.819152} \right) \\
 \theta &= 54.999...^\circ  \\
 \theta &\doteq 55.0^\circ  \\
 \end{align}\)


Step 3: Sketch the reference angle(s) in the appropriate quadrant(s), and then determine the angle(s) in standard position.

Quadrant III:

\(\begin{align}
 \theta - 180^\circ &= \theta _R  \\
 \theta &\doteq 180^\circ + 55.0^\circ  \\
 \theta &\doteq 235.0^\circ  \\
 \end{align}\)


Quadrant IV:

\(\begin{align}
 360^\circ - \theta &= \theta _R  \\
 360^\circ - \theta &\doteq 55.0^\circ  \\
 305.0^\circ &\doteq \theta  \\
 \end{align}\)


Therefore, \(\theta \doteq 235.0^\circ\) and \(\theta \doteq 305.0^\circ \).