Example  3

 

 Multimedia



The second ring from the centre of the Aztec Calendar marks the days of the Aztec month, which number \(20\). Determine which days of the month would give a ratio of tan \(\theta = -1.3764\).

Step 1: Determine in which quadrants the solutions will lie.

Recall that tan \(\theta\) is negative in Quadrants II and IV.

Step 2: Determine the reference angle.

\(\begin{align}
 \tan \theta &= 1.3764 \\
 \theta &= \tan ^{ - 1} \left( {1.3764} \right) \\
 \theta &= 54.000...^\circ  \\
 \end{align}\)


Step 3: Determine the angles in standard position.

Quadrant II:

\(\begin{align}
 \theta &= 180^\circ - \theta _R  \\
 \theta &= 180^\circ - 54.000^\circ  \\
 \theta &= 126.000^\circ  \\
 \theta  &\doteq 126^\circ  \\
 \end{align}\)


Quadrant IV:

\(\begin{align}
 \theta &= 360^\circ - \theta _R  \\
 \theta &= 360^\circ - 54.000^\circ  \\
 \theta &= 306.000^\circ  \\
 \theta &\doteq 306^\circ  \\
 \end{align}\)


Step 4: Determine the days of the month that correspond to the angles.

Set up a proportion.

\(\begin{align}
 \frac{x \thinspace {\rm {days}}}{{20}} &= \frac{{126^\circ }}{{360^\circ }} \\
 x &= 7\thinspace {\rm days} \\
 \end{align}\)
\(\begin{align}
 \frac{x \thinspace {\rm {days}}}{{20}} &= \frac{{306^\circ }}{{360^\circ }} \\
 x &= 17\thinspace {\rm days} \\
 \end{align}\)

The two days of the month that have a tangent ratio of \(–1.3764\) are day 7 and day 17.