Compare Your Answers
Completion requirements
Determine the angle(s) in standard position that satisfy the equations.
-
\(\sin \theta = \frac{{\sqrt 3 }}{2},\thinspace \rm {where} \thinspace 0^\circ \le \theta < 360^\circ \)
The quadrants where \(\sin \theta\) is positive are Quadrants I and II.
The \(\sin \theta = \frac{\sqrt{3}}{2}\) indicates that \(\theta\) is one of the special triangle angles, specifically \(\theta = 60^\circ\). This is the reference angle.
Quadrant I:
\(\begin{align}
\theta &= \theta _R \\
\theta &= 60^\circ \\
\end{align}\)
Quadrant II:
\(\begin{align}
180^\circ - \theta &= \theta _R \\
180^\circ - \theta &= 60^\circ \\
\theta &= 120^\circ \\
\end{align}\)
-
\(\tan \theta = -1.19175,\thinspace \rm {where} \thinspace 180^\circ \le \theta < 360^\circ \)
The quadrant where \(\tan \theta\) is negative, from \(180^\circ\) to \(360^\circ\), is Quadrant IV.
The reference angle is found by taking the inverse tangent of the positive value of the ratio.
\(\begin{align}
\tan \theta _R &= 1.19175 \\
\theta _R &= \tan ^{ - 1} \left( {1.19175} \right) \\
\theta _R &= 49.999...^\circ \\
\theta _R &\doteq 50.0^\circ \\
\end{align}\)
Quadrant IV:
\(\begin{align}
360^\circ - \theta &= \theta _R \\
360^\circ - \theta &\doteq 50.0^\circ \\
\theta &\doteq 310.0^\circ \\
\end{align}\)