Example  1

Solve for side \(g\) in the following triangle. Round to the nearest tenth of a millimetre.



Step 1: Determine the height of the triangle.

\(\theta = 60^\circ\)
\({\mathop{\rm opp}\nolimits} = h\)
\({\mathop{\rm hyp}\nolimits} = 17\thinspace \rm{mm}\)

\(\begin{align}
 \sin \theta &= \frac{{{\mathop{\rm opp}\nolimits} }}{{{\mathop{\rm hyp}\nolimits} }} \\
 \sin 60^\circ &= \frac{h}{{17}} \\
 17\sin 60^\circ &= h \\
 14.722... &= h \\
 \end{align}\)


Step 2: Determine the length of side \(g\).

\(\theta = 10^\circ\)
\({\mathop{\rm opp}\nolimits} = h = 14.722...\)
\({\mathop{\rm hyp}\nolimits} = g\)

\(\begin{align}
 \sin \theta &= \frac{{{\mathop{\rm opp}\nolimits} }}{{{\mathop{\rm hyp}\nolimits} }} \\
 \sin 10^\circ &= \frac{{14.722...}}{g} \\
 g &= \frac{{14.722...}}{{\sin 10^\circ }} \\
 g &= 84.783... \\
 g &\doteq 84.8 \\
 \end{align}\)


Remember not to round until the final step!
The length of side \(g\) is approximately \(84.8 \thinspace \rm{mm}\)