Compare Your Answers
Completion requirements
-
Solve for side \(h\) in the given triangle. Round to the nearest tenth of an inch.Step 1: Draw an altitude to make two right triangles.
Step 2: Determine the height, \(t\), of the triangle.
\(\theta = 35^\circ\)
\({\mathop{\rm opp}\nolimits} = t\)
\({\mathop{\rm hyp}\nolimits} = 8 \thinspace \rm{in}\)
\(\begin{align}
\sin \theta &= \frac{{{\mathop{\rm opp}\nolimits} }}{{{\mathop{\rm hyp}\nolimits} }} \\
\sin 35^\circ &= \frac{t}{8} \\
8\sin 35^\circ &= t \\
4.588... &= t \\
\end{align}\)
Step 3: Determine the length of side \(h\).
\(\theta = 15^\circ\)
\({\mathop{\rm opp}\nolimits} = t = 4.588...\rm{in}\)
\({\mathop{\rm hyp}\nolimits} = h\)
\(\begin{align}
\sin \theta &= \frac{{{\mathop{\rm opp}\nolimits} }}{{{\mathop{\rm hyp}\nolimits} }} \\
\sin 15^\circ &= \frac{{4.588...}}{h} \\
h &= \frac{{4.588...}}{{\sin 15^\circ }} \\
h &= 17.729... \\
h &\doteq 17.7 \\
\end{align}\)
Side \(h\) is approximately \(17.7\) in long. - A
cell tower has two guy wires attached at the same point. Naomi measures
the angle of elevation from the wire closest to the tower to be
\(43^\circ\) and the angle of elevation from the second wire to be
\(32^\circ\). The distance between the two wires on the ground is \(6.3
\thinspace \rm{ft}\). How high up the tower are the wires connected?
Round to the nearest foot.Step 1: Label unknown sides.
Step 2: Solve for \(x\).\(\begin{align}
\tan \theta &= \frac{{{\mathop{\rm opp}\nolimits} }}{{{\mathop{\rm adj}\nolimits} }} \\
\tan 43^\circ &= \frac{y}{x} \\
x\tan 43^\circ &= y \\
\end{align}\)\(\begin{align}
\tan \theta &= \frac{{{\mathop{\rm opp}\nolimits} }}{{{\mathop{\rm adj}\nolimits} }} \\
\tan 32^\circ &= \frac{y}{{x + 6.3}} \\
\left( {x + 6.3} \right)\tan 32^\circ &= y \\
\end{align}\)
Both \(y\)’s will be equal, therefore
\(\begin{align}
x\tan 43^\circ &= \left( {x + 6.3} \right)\tan 32^\circ \\
0.932...x &= 0.624...x + 3.936... \\
0.307...x &= 3.936... \\
x &= 12.796... \\
\end{align}\)
Step 3: Solve for \(y\).
\(\begin{align}
y &= x\tan 43^\circ \\
y &= \left( {12.796...} \right)\tan 43^\circ \\
y &= 11.932... \\
y &\doteq 12\thinspace {\rm{ ft}} \\
\end{align}\)
The wires are attached at a height of approximately \(12\) ft up on the tower.