Example 1
Completion requirements
Example 1 |
Use the cosine law to solve for the unknown side or angle. Round answers to the nearest tenth.
To help you organize, write down what is given.
\(\angle A = 20^\circ\)
\(a = x\)
\(b = 25 \thinspace \rm{cm}\)
\(c = 22 \thinspace \rm{cm}\)
\(\begin{align}
a^2 &= b^2 + c^2 - 2bc\cos A \\
x^2 &= \left( {25} \right)^2 + \left( {22} \right)^2 - 2\left( {25} \right)\left( {22} \right)\cos 20^\circ \\
x^2 &= 75.338... \\
x &= 8.679... \\
x &\doteq 8.7 \\
\end{align}\)
The unknown side length is approximately 8.7 cm.
To help you organize, write down what is given.The unknown angle is approximately \(37.1^\circ\).\(\angle A = \thinspace ?\)
\(a = 61 \thinspace \rm{in}\)
\(b = 42 \thinspace \rm{in}\)
\(c = 89 \thinspace \rm{in}\)
\(\begin{align}
\cos A &= \frac{{b^2 + c^2 - a^2 }}{{2bc}} \\
\cos A &= \frac{{\left( {42} \right)^2 + \left( {89} \right)^2 - \left( {61} \right)^2 }}{{2\left( {42} \right)\left( {89} \right)}} \\
\cos A &= \frac{{5\thinspace 964}}{{7\thinspace 476}} \\
\cos A &= 0.797... \\
\angle A &= \cos ^{ - 1} \left( {0.797...} \right) \\
\angle A &= 37.083...^\circ \\
\angle A &\doteq 37.1^\circ \\
\end{align}\)
Note that you can use the regular version of the cosine law and solve for \(\angle A\).
\(\begin{align}
a^2 &= b^2 + c^2 - 2bc\cos A \\
\left( {61} \right)^2 &= \left( {42} \right)^2 + \left( {89} \right)^2 - 2\left( {42} \right)\left( {89} \right)\cos A \\
3\thinspace 721 &= 9\thinspace 685 - 7\thinspace 476\cos A \\
- 5\thinspace 964 &= - 7\thinspace 476\cos A \\
0.797... &= \cos A \\
\cos ^{ - 1} \left( {0.797...} \right) &= \angle A \\
37.083...^\circ &= \angle A \\
37.1^\circ &\doteq \angle A \\
\end{align}\)