Example  1

Determine the measure of angle \(A\), to the nearest degree.



Step 1: Write down what is given to determine whether to use the sine law or the cosine law.

\(a = 37\thinspace \rm{cm}\)
\(c = 125\thinspace \rm{cm}\)
\(\angle A = \thinspace ?\)
\(\angle B = 135^\circ\)

Because the third side of the triangle is unknown, the cosine law cannot be used. The sine law will work.

Step 2: Solve for angle \(A\).

\(\begin{align}
 \frac{a}{{\sin A}} &= \frac{b}{{\sin B}} \\
 \frac{{37}}{{\sin A}} &= \frac{{125}}{{\sin 135^\circ }} \\
 \frac{{37\sin 135^\circ }}{{125}} &= \sin A \\
 0.209... &= \sin A \\
 \sin ^{ - 1} \left( {0.209...} \right) &= \angle A \\
 12.081...^\circ &= \angle A \\
 12^\circ &\doteq \angle A \\
 \end{align}\)