Example  3

Solve \(\triangle ABC\) given that \(AB = 17.6\), \(BC = 14.2\), and \(\angle A = 37^\circ\).

Step 1: Draw a possible diagram of the triangle.

Since two sides and an acute angle not contained within those two sides are given, the ambiguous case of the sine law should be considered.

Step 2: Determine how many triangles are possible with the information.

\(\begin{align}
 c \sin A &= 17.6 \sin 37^\circ  \\
 &= 10.591...\end{align}\)


Because side \(a\) is between \(10.591...\) and \(17.6\), there are two possible triangles.

The second possible triangle is:

Step 3: Solve the triangles.


Case 1: \(\triangle ABC'\)
Find \(\angle C'\).
\(\begin{align}
 \frac{a}{{\sin A}} &= \frac{c}{{\sin C'}} \\
 \frac{{14.2}}{{\sin 37^\circ }} &= \frac{{17.6}}{{\sin C'}} \\
 \sin C' &= \frac{{17.6\sin 37^\circ }}{{14.2}} \\
 \sin C' &= 0.745... \\
 \angle C' &= \sin ^{ - 1} \left( {0.745...} \right) \\
 \angle C' &= 48.237... \\
 \angle C' &\doteq 48.2^\circ  \\
 \end{align}\)

Find \(\angle B\).

\(\begin{align}
\angle B &\doteq 180^\circ - 37^\circ - 48.2^\circ \\
&\doteq 94.8^\circ \end{align}\)

Find side \(AC'\).

\(\begin{align}
 \frac{b}{{\sin B}} &= \frac{a}{{\sin A}} \\
 \frac{{AC'}}{{\sin 94.8^\circ }} &\doteq \frac{{14.2}}{{\sin 37^\circ }} \\
 AC' &\doteq \frac{{14.2\sin 94.8^\circ }}{{\sin 37^\circ }} \\
 AC' &\doteq 23.512... \\
 AC' &\doteq 23.5 \\
 \end{align}\)


Case 2: \(\triangle ABC''\)
Find \(\angle C''\).

This is the same step as in Case 1. Using the information from Case 1, you know that the reference angle for Case 2 is \(48.2^\circ\). In Case 2, \(\angle C''\) will be obtuse, and located in Quadrant II.

\(\begin{align}
 \angle C'' &\doteq 180^\circ - 48.2^\circ \\
&\doteq 131.8^\circ \end{align}\)



Find \(\angle B\).

\(\begin{align}
\angle B &\doteq 180^\circ - 37^\circ - 131.8^\circ \\
&\doteq 11.2^\circ \end{align}\)

Find side \(AC''\).

\(\begin{align}
 \frac{b}{{\sin B}} &= \frac{a}{{\sin A}} \\
 \frac{{AC''}}{{\sin 11.2^\circ }} &\doteq\frac{{14.2}}{{\sin 37^\circ }} \\
 AC'' &\doteq \frac{{14.2\sin 11.2^\circ }}{{\sin 37^\circ }} \\
 AC'' &\doteq 4.583... \\
 AC'' &\doteq 4.6 \\
 \end{align}\)