Solve \(\triangle QRS\) given \(RS = 10\thinspace \rm{m}\), \(QR = 14\thinspace \rm{m}\), and \(\angle Q = 39^\circ\). If two solutions are possible, give both.

First, check to see how many answers there are:

\(\begin{align}
 b\sin A &= s\sin Q \\
  &= 14\sin 39^\circ  \\
  &= 8.810... \\
 \end{align}\)


Because side \(RS\) is greater than \(8.810…\), but less than side \(QR\), there are two possible triangles.



Case 1: \(\triangle QRS''\)

Find \(\angle S''\).

\[\begin{align}
 \frac{a}{{\sin A}} &= \frac{c}{{\sin C}} \\
 \frac{{10}}{{\sin 39^\circ }} &= \frac{{14}}{{\sin S''}} \\
 \sin S'' &= \frac{{14\sin 39^\circ }}{{10}} \\
 \sin S'' &= 0.881... \\
 \angle S'' &= \sin ^{ - 1} \left( {0.881...} \right) \\
 \angle S'' &= 61.769... \\
 \angle S'' &\doteq 61.8^\circ  \\
 \end{align}\]

Find \(\angle R\).

\(\begin{align}
 \angle R &\doteq 180^\circ - 39^\circ - 61.8^\circ \\
&\doteq 79.2^\circ \end{align}\)


Find side \(QS''\).

\[\begin{align}
 \frac{b}{{\sin B}} &= \frac{a}{{\sin A}} \\
 \frac{{QS''}}{{\sin 79.2^\circ }} &\doteq \frac{{10}}{{\sin 39^\circ }} \\
 QS'' &\doteq \frac{{10\sin 79.2^\circ }}{{\sin 39^\circ }} \\
 QS'' &\doteq 15.608... \\
 QS'' &\doteq 15.6{\rm{ m}} \\
 \end{align}\]

Case 2: \(\triangle QRS'\)

Find \(\angle S'\).

The reference angle is the same as \(\angle S''\).

\(\begin{align}
 \angle S' &= 180^\circ - \theta _R  \\
 \angle S' &\doteq 180^\circ - 61.8^\circ  \\
 \angle S' &\doteq 118.2^\circ  \\
 \end{align}\)


Find \(\angle R\).

\(\begin{align}
 \angle R &\doteq 180^\circ - 39^\circ - 118.2^\circ \\
&\doteq 22.8^\circ \end{align}\)


Find side \(QS'\).

\(\begin{align}
 \frac{b}{{\sin B}} &= \frac{a}{{\sin A}} \\
 \frac{{QS'}}{{\sin 22.8^\circ }} &\doteq \frac{{10}}{{\sin 39^\circ }} \\
 QS' &\doteq \frac{{10\sin 22.8^\circ }}{{\sin 39^\circ }} \\
 QS' &\doteq 6.157... \\
 QS' &\doteq 6.2\thinspace {\rm {m}} \\
 \end{align}\)


 For further information about the ambiguous case see pp. 104 to 107 of Pre-Calculus 11.