Example  1

Simplify the expression \(\frac{315}{840}\).


Method 1: GCF

Step 1: Determine the GCF.

Because it is not obvious what the GCF is, break down both numbers into their prime factors.

\(\begin{align}
 315 &= {\color{red}3} \times 3 \times {\color{red}5} \times {\color{red}7} \\
 840 &= 2 \times 2 \times 2 \times {\color{red}3} \times {\color{red}5} \times {\color{red}7} \\
 {\rm{GCF}} &= 3 \times 5 \times 7 = 105 \\
 \end{align}\)


Step 2: Divide the numerator and denominator by the GCF.

\[\frac{{315 \div 105}}{{840 \div 105}} = \frac{3}{8}\]

Method 2: Prime Factorization

Step 1: Write out the prime factors of each number.

This method starts basically the same way as the previous method, but in this method, write out the prime factors as a fraction.

\[\frac{{315}}{{840}} = \frac{{3 \times 3 \times 5 \times 7}}{{2 \times 2 \times 2 \times 3 \times 5 \times 7}}\]

Step 2: Reduce the numerator and denominator. Then, simplify.

\[\frac{{{\color{red}\cancel {\color{#444}3}}} \times 3 \times {{\color{red}\cancel {\color{#444}5}}} \times {{\color{red}\cancel {\color{#444}7}}}}{{2 \times 2 \times 2 \times {{\color{red}\cancel {\color{#444}3}}} \times {{\color{red}\cancel {\color{#444}5}}} \times {{\color{red}\cancel {\color{#444}7}}}}} = \frac{3}{8}\]