Example  2

Simplify the expression \(\frac{6\thinspace 380}{13\thinspace 050}\).


Method 1: GCF

Step 1: Determine the GCF.

\(\begin{align}
 6\thinspace 380 &= {\color{red}2} \times 2 \times {\color{red}5} \times 11 \times {\color{red}29} \\
 13\thinspace 050 &= {\color{red}2} \times 3 \times 3 \times {\color{red}5} \times 5 \times {\color{red}29} \\
 {\rm{GCF}} &= 2 \times 5 \times 29 = 290 \\
 \end{align}\)


Step 2: Divide the numerator and denominator by the GCF.

\[\frac{{6\thinspace 380 \div 290}}{{13\thinspace 050 \div 290}} = \frac{22}{45}\]

Method 2: Prime Factorization

Step 1: Write out the prime factors of each number.

\[\frac{{6\thinspace 380}}{{13\thinspace 050}} = \frac{{2 \times 2 \times 5 \times 11 \times 29}}{{2 \times 3 \times 3 \times 5 \times 5 \times 29}}\]

Step 2: Reduce the numerator and denominator. Then, simplify.

\[\frac{{{\color{red} \cancel {\color{#444}2}} \times 2 \times{\color{red} \cancel {\color{#444}{5}}} \times 11 \times {\color{red} \cancel {\color{#444}{29}}}}}{{{\color{red} \cancel {\color{#444}2}} \times 3 \times 3 \times{\color{red} \cancel {\color{#444}{5}}} \times 5 \times {\color{red} \cancel {\color{#444}{29}}}}} = \frac{{22}}{{45}}\]