Example  3

Determine the non-permissible values for the expression \(\frac{6}{{9x^2 - 25y^2}}\).


Step 1: Factor the denominator.

\(\frac{6}{{9x^2  - 25y^2 }} = \frac{6}{{\left( {3x - 5y} \right)\left( {3x + 5y} \right)}}\)

Step 2: Determine the values of the variables that cause the denominator to equal zero.

\(\begin{align}
 3x - 5y &\ne 0 \\
 x &\ne \frac{5}{3}y \\
 \end{align}\)

\(\begin{align}
 3x + 5y &\ne 0 \\
 x &\ne - \frac{5}{3}y \\
 \end{align}\)

The NPVs for \(x\) are \(\pm \frac{5}{3}y\). The expression can be rewritten as \(\frac{6}{{9x^2 - 25y^2}},\thinspace x \ne \pm \frac{5}{3}y\).
 
Alternatively, the NPVs could be stated in the form \(y \ne \pm \left (\frac{3}{5} \right ) x\).

 For further information about non-permissible values, see p. 312 of Pre-Calculus 11.