Example 3
Completion requirements
Example 3 |
Simplify the expression \(\frac{{27m^2n + 18mn}}{{3m^2 + 12m}}\). Identify the non-permissible values.
Step 1: Factor each polynomial.
Step 2: Determine the NPVs.
Step 3: Simplify by removing factors found in both the numerator and denominator.
The simplified expression is \(\frac{{3n\left( {3m + 2} \right)}}{{m + 4}},\thinspace m \ne 0, -4\).
\[\frac{{27m^2n + 18mn}}{{3m^2 + 12m}} = \frac{{9mn\left( {3m + 2} \right)}}{{3m\left( {m + 4} \right)}}\]
Step 2: Determine the NPVs.
\(m \ne 0\)
\(\begin{align}
m + 4 &\ne 0 \\
m &\ne -4 \\
\end{align}\)
m + 4 &\ne 0 \\
m &\ne -4 \\
\end{align}\)
Step 3: Simplify by removing factors found in both the numerator and denominator.
\[\frac{{9mn \left( {3m + 2} \right)}}{{3m\left({m + 4} \right)}} = \frac{{3n\left( {3m + 2} \right)}}{{m + 4}}\]
The simplified expression is \(\frac{{3n\left( {3m + 2} \right)}}{{m + 4}},\thinspace m \ne 0, -4\).