Example 4
Completion requirements
Example 4 |
Simplify the expression \(\frac{{a^2 - 3a - 18}}{{a^2 + 5a + 6}}\). Identify the non-permissible values.
Step 1: Factor each polynomial.
Step 2: Determine the NPVs.
Step 3: Simplify by removing factors found in both the numerator and denominator.
The simplified expression is \(\frac{{a - 6}}{{a + 2}}, \thinspace a \ne - 2, - 3\)
\[\frac{{a^2 - 3a - 18}}{{a^2 + 5a + 6}} = \frac{(a - 6)\left( {a + 3}
\right)}{{\left( {a + 2} \right)\left( {a + 3} \right)}}\]
Step 2: Determine the NPVs.
\(\begin{align}
a + 2 &\ne 0 \\
a &\ne -2 \\
\end{align}\)
a + 2 &\ne 0 \\
a &\ne -2 \\
\end{align}\)
\(\begin{align}
a + 3 &\ne 0 \\
a &\ne -3 \\
\end{align}\)
a + 3 &\ne 0 \\
a &\ne -3 \\
\end{align}\)
Step 3: Simplify by removing factors found in both the numerator and denominator.
\[\frac{{(a - 6) {\color{red} \cancel {\color{#444} {\left( {a + 3}
\right)}}}}}{{\left( {a + 2} \right) {\color{red} \cancel
{\color{#444} {\left( {a + 3} \right)}}}}} = \frac{{a - 6}}{{a + 2}}\]
The simplified expression is \(\frac{{a - 6}}{{a + 2}}, \thinspace a \ne - 2, - 3\)