Example  3

Simplify the expression \(\frac{2}{{m + 3}} + \frac{4}{{3\left( {m + 3} \right)}}\). Identify any non-permissible values.


Step 1: Identify the NPVs.

\(\begin{align}
 m + 3 &\ne 0 \\
 m &\ne -3 \\
 \end{align}\)


Step 2: Determine the LCD.

The LCD is \(3\left( {m + 3} \right)\).

Step 3: Use the LCD to rewrite each term as an equivalent rational expression with the same denominator, and simplify.

\[\begin{align}
 \frac{{2\left( {\color{red}3} \right)}}{{\left( {m + 3} \right)\left( {\color{red}3} \right)}} + \frac{4}{{3\left( {m + 3} \right)}} &= \frac{6}{{3\left( {m + 3} \right)}} + \frac{4}{{3\left( {m + 3} \right)}} \\
  &= \frac{{6 + 4}}{{3\left( {m + 3} \right)}} \\
  &= \frac{{10}}{{3\left( {m + 3} \right)}}, \thinspace m \ne - 3 \\
 \end{align}\]