Example 4
Completion requirements
Example 4 |
Simplify the expression \(\frac{{2x + 5}}{{2x^2 + 9x + 4}} + \frac{3}{{2x + 1}}\). Identify any non-permissible values.
Step 1: Identify the NPVs.
\(2x^2 + 9x + 4 = \left( {2x + 1} \right)\left( {x + 4} \right)\)
Step 2: Determine the LCD.
The LCD is \(\left( {2x + 1} \right)\left( {x + 4} \right)\).
Step 3: Use the LCD to rewrite each term as an equivalent rational expression with the same denominator, and simplify.
\(2x^2 + 9x + 4 = \left( {2x + 1} \right)\left( {x + 4} \right)\)
\(\begin{align}
2x + 1 &\ne 0 \\
x &\ne -\frac{1}{2} \\
\end{align}\)
2x + 1 &\ne 0 \\
x &\ne -\frac{1}{2} \\
\end{align}\)
\(\begin{align}
x + 4 &\ne 0 \\
x &\ne -4 \\
\end{align}\)
x + 4 &\ne 0 \\
x &\ne -4 \\
\end{align}\)
Step 2: Determine the LCD.
The LCD is \(\left( {2x + 1} \right)\left( {x + 4} \right)\).
Step 3: Use the LCD to rewrite each term as an equivalent rational expression with the same denominator, and simplify.
\[\begin{align}
\frac{{2x + 5}}{{2x^2 + 9x + 4}} + \frac{3}{{2x + 1}} &= \frac{{2x + 5}}{{\left( {2x + 1} \right)\left( {x + 4} \right)}} + \frac{{3\left( {\color{red}{x + 4}} \right)}}{{\left( {2x + 1} \right)\left( {\color{red}{x + 4}} \right)}} \\
&= \frac{{2x + 5}}{{\left( {2x + 1} \right)\left( {x + 4} \right)}} + \frac{{3\left( {x + 4} \right)}}{{\left( {2x + 1} \right)\left( {x + 4} \right)}} \\
&= \frac{{2x + 5 + 3x + 12}}{{\left( {2x + 1} \right)\left( {x + 4} \right)}} \\
&= \frac{{5x + 17}}{{\left( {2x + 1} \right)\left( {x + 4} \right)}},\thinspace x \ne - 4, \thinspace -\frac{1}{2} \\
\end{align}\]
\frac{{2x + 5}}{{2x^2 + 9x + 4}} + \frac{3}{{2x + 1}} &= \frac{{2x + 5}}{{\left( {2x + 1} \right)\left( {x + 4} \right)}} + \frac{{3\left( {\color{red}{x + 4}} \right)}}{{\left( {2x + 1} \right)\left( {\color{red}{x + 4}} \right)}} \\
&= \frac{{2x + 5}}{{\left( {2x + 1} \right)\left( {x + 4} \right)}} + \frac{{3\left( {x + 4} \right)}}{{\left( {2x + 1} \right)\left( {x + 4} \right)}} \\
&= \frac{{2x + 5 + 3x + 12}}{{\left( {2x + 1} \right)\left( {x + 4} \right)}} \\
&= \frac{{5x + 17}}{{\left( {2x + 1} \right)\left( {x + 4} \right)}},\thinspace x \ne - 4, \thinspace -\frac{1}{2} \\
\end{align}\]