Identify any non-permissible values, and simplify the expressions.

  1. \(\frac{{9d}}{{4f^2}} - \frac{{3d}}{{4f^2 }}\)

    NPVs:

    \(\begin{align}
     f^2 &\ne 0 \\
     f &\ne 0 \\
     \end{align}\)


    \[\begin{align}
      \frac{{9d}}{{4f^2 }} - \frac{{3d}}{{4f^2 }} &= \frac{{9d - 3d}}{{4f^2 }} \\
      &= \frac{{6d}}{{4f^2 }} \\
      &= \frac{{3d}}{{2f^2 }},\thinspace f \ne 0 \\
     \end{align}\]


  2. \(\frac{6}{{c\left( {c + 2} \right)}} - \frac{2}{c}\)

    NPVs:

    \(c \ne 0\)
    \(\begin{align}
     c + 2 &\ne 0 \\
     c &\ne - 2 \\
     \end{align}\)

    \[\begin{align}
     \frac{6}{{c\left( {c + 2} \right)}} - \frac{{2\left( {\color{red}{c + 2}} \right)}}{{c\left( {\color{red}{c + 2}} \right)}} &= \frac{6}{{c\left( {c + 2} \right)}} - \frac{{2\left( {c + 2} \right)}}{{c\left( {c + 2} \right)}} \\
      &= \frac{{6 - \left( {2c + 4} \right)}}{{c\left( {c + 2} \right)}} \\
      &= \frac{{2 - 2c}}{{c\left( {c + 2} \right)}},\thinspace c \ne - 2,\thinspace 0 \\
     \end{align}\]


  3. \(\frac{{8x}}{{4x + 1}} + \frac{3}{{4x^2 + 13x + 3}}\)

    NPVs:

    \(4x^2 + 13x + 3 = \left( {4x + 1} \right)\left( {x + 3} \right)\)

    \(\begin{align}
     4x + 1 &\ne 0 \\
     x &\ne - \frac{1}{4} \\
     \end{align}\)
    \(\begin{align}
     x + 3 &\ne 0 \\
     x &\ne - 3 \\
     \end{align}\)

    \[\begin{align}
     \frac{{8x}}{{4x + 1}} + \frac{3}{{4x^2 + 13x + 3}} &= \frac{{8x}}{{4x + 1}} + \frac{3}{{\left( {4x + 1} \right)\left( {x + 3} \right)}} \\
      &= \frac{{\left( {8x} \right)\left( {\color{red}{x + 3}} \right)}}{{\left( {4x + 1} \right)\left( {\color{red}{x + 3}} \right)}} + \frac{3}{{\left( {4x + 1} \right)\left( {x + 3} \right)}} \\
      &= \frac{{8x\left( {x + 3} \right)}}{{\left( {4x + 1} \right)\left( {x + 3} \right)}} + \frac{3}{{\left( {4x + 1} \right)\left( {x + 3} \right)}} \\
      &= \frac{{8x^2 + 24x + 3}}{{\left( {4x + 1} \right)\left( {x + 3} \right)}},\thinspace x \ne - 3, \thinspace -\frac{1}{4} \\
     \end{align}\]


 For further information about adding and subtracting rational expressions, see pp. 332 to 335 of Pre-Calculus 11.