Example 1
Completion requirements
Example 1 |
Evaluate and simplify \(\frac{{15}}{{22}} \times \frac{{44}}{{63}}\).
Step 1: Simplify by eliminating equal factors found in the numerator and denominator of either fraction.
Step 2: Multiply the fractions.
Therefore, \(\frac{{15}}{{22}} \times \frac{{44}}{{63}} = \frac{{10}}{{21}}\).
\[\begin{align}
\frac{{15}}{{22}} \times \frac{{44}}{{63}} &= \frac{{{\color{red}\cancel {\color{#444}{3}} }\times 5}}{{{\color{red}\cancel {\color{#444}{2}}} \times {\color{red}\cancel {\color{#444}{11}}}}} \times \frac{{{\color{red}\cancel {\color{#444}{2}}} \times 2 \times {\color{red}\cancel {\color{#444}{11}}}}}{{{\color{red}\cancel {\color{#444}{3}}} \times 3 \times 7}} \\
&= \frac{5}{1} \times \frac{2}{{3 \times 7}} \\
\end{align}\]
\frac{{15}}{{22}} \times \frac{{44}}{{63}} &= \frac{{{\color{red}\cancel {\color{#444}{3}} }\times 5}}{{{\color{red}\cancel {\color{#444}{2}}} \times {\color{red}\cancel {\color{#444}{11}}}}} \times \frac{{{\color{red}\cancel {\color{#444}{2}}} \times 2 \times {\color{red}\cancel {\color{#444}{11}}}}}{{{\color{red}\cancel {\color{#444}{3}}} \times 3 \times 7}} \\
&= \frac{5}{1} \times \frac{2}{{3 \times 7}} \\
\end{align}\]
Step 2: Multiply the fractions.
\[\begin{align}
\frac{5}{1} \times \frac{2}{{3 \times 7}} &= \frac{{5 \times 2}}{{3 \times 7}} \\
&= \frac{{10}}{{21}} \\
\end{align}\]
\frac{5}{1} \times \frac{2}{{3 \times 7}} &= \frac{{5 \times 2}}{{3 \times 7}} \\
&= \frac{{10}}{{21}} \\
\end{align}\]
Therefore, \(\frac{{15}}{{22}} \times \frac{{44}}{{63}} = \frac{{10}}{{21}}\).