Compare Your Answers
Completion requirements
Simplify the rational expressions, and identify any non-permissible values.
-
\(\frac{{4c}}{{ab}} \cdot \frac{{5a^2 }}{{2bc^2 }}\)
NPVs:
\(a \ne 0\)
\(b \ne 0\)
\(c \ne 0\)
\(\begin{align}
\frac{{4c}}{{ab}} \cdot \frac{{5a^2 }}{{2bc^2 }} &= \frac{{20a^2 c}}{{2ab^2 c^2 }} \\
&= \frac{{10a}}{{b^2 c}}, a \ne 0, b \ne 0, c \ne 0 \\
\end{align}\) -
\(\frac{{7\left( {q - 2} \right)}}{{\left( {p + 2} \right)}}
\cdot \frac{{3\left( {p - 2} \right)}}{{21\left( {q - 2} \right)}}\)
NPVs:\(\begin{align}
p + 2 &\ne 0 \\
p &\ne -2 \\
\end{align}\)\(\begin{align}
q - 2 &\ne 0 \\
q &\ne 2 \\
\end{align}\)\[\begin{align}
\frac{{{\color{red} \cancel {\color{#444}{7}}} {\color{red}\cancel {\color{#444}{\left( {q - 2} \right)}}}}}{{\left( {p + 2} \right)}} \cdot \frac{{3\left( {p - 2} \right)}}{{{\color{red} \cancel {\color{#444}{21}^3}} {\color{red}\cancel {\color{#444}{\left( {q - 2} \right)}}}}} &= \frac{1}{{p + 2}} \cdot \frac{{{\color{red}\cancel {\color{#444}{3}}} \left( {p - 2} \right)}}{\color{red} {\cancel {\color{#444}{3}}}} \\
&= \frac{1}{{p + 2}} \cdot \frac{{p - 2}}{1} \\
&= \frac{{p - 2}}{{p + 2}}, \thinspace p \ne - 2,\thinspace q \ne 2 \\
\end{align}\] -
\(\frac{{r^2 - 9r + 14}}{{r^2 - 16}} \cdot \frac{{2r + 8}}{{r^2 + 5r - 14}}\)
Factor all polynomials.\[\frac{{r^2 - 9r + 14}}{{r^2 - 16}} \cdot \frac{{2r + 8}}{{r^2 + 5r - 14}} = \frac{{\left( {r - 7} \right)\left( {r - 2} \right)}}{{\left( {r - 4} \right)\left( {r + 4} \right)}} \cdot \frac{{2\left( {r + 4} \right)}}{{\left( {r + 7} \right)\left( {r - 2} \right)}}\]
NPVs:\(\begin{align}
r - 4 &\ne 0 \\
r &\ne 4 \\
\end{align}\)\(\begin{align}
r + 4 &\ne 0 \\
r &\ne - 4 \\
\end{align}\)\(\begin{align}
r + 7 &\ne 0 \\
r &\ne - 7 \\
\end{align}\)\(\begin{align}
r - 2 &\ne 0 \\
r &\ne 2 \\
\end{align}\)\[\begin{align}
\frac{{r^2 - 9r + 14}}{{r^2 - 16}} \cdot \frac{{2r + 8}}{{r^2 + 5r - 14}} &= \frac{{\left( {r - 7} \right) {\color{red} \cancel {\color{#444}{\left( {r - 2} \right)}}}}}{{\left( {r - 4} \right) {\color{red}\cancel {\color{#444}{\left( {r + 4} \right)}}}}} \cdot \frac{{2{\color{red} \cancel {\color{#444}{\left( {r + 4} \right)}}}}}{{\left( {r + 7} \right) {\color{red} \cancel {\color{#444}{\left( {r - 2} \right)}}}}} \\
&= \frac{{r - 7}}{{r - 4}} \cdot \frac{2}{{r + 7}} \\
&= \frac{{2\left( {r - 7} \right)}}{{\left( {r - 4} \right)\left( {r + 7} \right)}}, \thinspace r \ne - 7, \thinspace \pm 4, \thinspace 2 \\
\end{align}\]