Example 5
Completion requirements
Example 5 |
Evaluate and simplify \(\frac{6}{{35}} \div \frac{9}{{25}}\).
Step 1: Rewrite the division statement as the product of the first expression and the reciprocal of the second.
Step 2: Complete the operation by following the rules for multiplication of fractions.
Therefore, \(\frac{6}{{35}} \div \frac{9}{{25}} = \frac{{10}}{{21}}\).
\[\frac{6}{{35}} \div \frac{9}{{25}} = \frac{6}{{35}} \times \frac{{25}}{9}\]
Step 2: Complete the operation by following the rules for multiplication of fractions.
\[\begin{align}
\frac{6}{{35}} \times \frac{{25}}{9} &= \frac{{{\color{red}\cancel {\color{#444}{6}}^2 }}}{{{\color{red}\cancel {\color{#444}{35}}^7 }}} \times \frac{{{\color{red}\cancel {\color{#444}{25}}^5 }}}{{{\color{red}\cancel {\color{#444}{9}}^3 }}} \\
&= \frac{2}{7} \times \frac{5}{3} \\
&= \frac{{10}}{{21}} \\
\end{align}\]
\frac{6}{{35}} \times \frac{{25}}{9} &= \frac{{{\color{red}\cancel {\color{#444}{6}}^2 }}}{{{\color{red}\cancel {\color{#444}{35}}^7 }}} \times \frac{{{\color{red}\cancel {\color{#444}{25}}^5 }}}{{{\color{red}\cancel {\color{#444}{9}}^3 }}} \\
&= \frac{2}{7} \times \frac{5}{3} \\
&= \frac{{10}}{{21}} \\
\end{align}\]
Therefore, \(\frac{6}{{35}} \div \frac{9}{{25}} = \frac{{10}}{{21}}\).