Example 6
Completion requirements
Example 6 |
Simplify the rational expression \(\frac{{4c}}{{15d}} \div \frac{{2c^2 }}{{21d}}\). Identify any non-permissible values.
Step 1: Identify the NPVs.
\(d \ne 0\)
Step 2: Multiply by the reciprocal.
Step 3: Identify any new NPVs.
By rewriting as a product, \(c^2\) now appears in the denominator; therefore, \(c \ne 0\).
Step 4: Simplify.
\(d \ne 0\)
Step 2: Multiply by the reciprocal.
\[\frac{{4c}}{{15d}} \div \frac{{2c^2 }}{{21d}} = \frac{{4c}}{{15d}} \cdot \frac{{21d}}{{2c^2 }}\]
Step 3: Identify any new NPVs.
By rewriting as a product, \(c^2\) now appears in the denominator; therefore, \(c \ne 0\).
Step 4: Simplify.
\[\begin{align}
\frac{{4c}}{{15d}} \div \frac{{2c^2 }}{{21d}} &= \frac{{4c}}{{15d}}\cdot \frac{{21d}}{{2c^2}} \\
&= \frac{84cd}{30c^2d} \\
&= \frac{{14}}{{5c}},\thinspace c \ne 0, \thinspace d \ne 0 \\
\end{align}\]
\frac{{4c}}{{15d}} \div \frac{{2c^2 }}{{21d}} &= \frac{{4c}}{{15d}}\cdot \frac{{21d}}{{2c^2}} \\
&= \frac{84cd}{30c^2d} \\
&= \frac{{14}}{{5c}},\thinspace c \ne 0, \thinspace d \ne 0 \\
\end{align}\]