Example  7

Simplify the rational expression \(\frac{{2\left( {x + 1} \right)}}{{5\left( {x - 3} \right)}} \div \frac{{3\left( {x + 1} \right)}}{{25\left( {x + 3} \right)}}\).  Identify any non-permissible values.


Step 1: Identify the NPVs.

\(\begin{align}
 x - 3 &\ne 0 \\
 x &\ne 3 \\
 \end{align}\)
\(\begin{align}
 x + 3 &\ne 0 \\
 x &\ne - 3 \\
 \end{align}\)

Step 2: Multiply by the reciprocal.

\[\frac{{2\left( {x + 1} \right)}}{{5\left( {x - 3} \right)}} \div \frac{{3\left( {x + 1} \right)}}{{25\left( {x + 3} \right)}} = \frac{{2\left( {x + 1} \right)}}{{5\left( {x - 3} \right)}}\cdot \frac{{25\left( {x + 3} \right)}}{{3\left( {x + 1} \right)}}\]

Step 3: Identify any new NPVs.

\(\begin{align}
 x + 1 &\ne 0 \\
 x &\ne - 1 \\
 \end{align}\)


Step 4: Simplify.

\[\begin{align}\frac{{2\left( {x + 1} \right)}}{{5\left( {x - 3} \right)}} \div \frac{{3\left( {x + 1} \right)}}{{25\left( {x + 3} \right)}} &= \frac{{2{\color{red} \cancel {\color{#444} {{\left( {x + 1} \right)}}}}}}{{{\color{red} \cancel {\color{#444} 5}}\left( {x - 3} \right)}}\cdot \frac{{{\color{red} \cancel {\color{#444}{25}}^5}\left( {x + 3} \right)}}{{3 {\color{red} \cancel {\color{#444}\left( {x + 1} \right)}}}} \\
 &= \frac{2}{x - 3} \cdot \frac{5(x - 3)}{3} \\
 &= \frac{10(x + 3)}{3 ( x - 3)} \cdot x \ne \pm3, -1\end{align}\]