Example  8

Simplify the rational expression \(\frac{{2r^2 + 15r + 18}}{{3r^2 - 20r + 12}} \div \frac{{3r^2 + 20r + 12}}{{r^2 - 5r - 6}}\). Identify any non-permissible values.


Step 1: Factor all polynomials.

\[\frac{{2r^2 + 15r + 18}}{{3r^2 - 20r + 12}} \div \frac{{3r^2 + 20r + 12}}{{r^2 - 5r - 6}} = \frac{{\left( {2r + 3} \right)\left( {r + 6} \right)}}{{\left( {3r - 2} \right)\left( {r - 6} \right)}} \div \frac{{\left( {3r + 2} \right)\left( {r + 6} \right)}}{{\left( {r - 6} \right)\left( {r + 1} \right)}}\]

Step 2: Identify the NPVs.

\[\begin{align}
 3r - 2 &\ne 0 \\
  r &\ne \frac{2}{3} \\
 \end{align}\]

\[\begin{align}
 r - 6 &\ne 0 \\
 r &\ne 6 \\
  \\
 \end{align}\]
\[\begin{align}
 r + 1 &\ne 0 \\
 r &\ne -1 \\
  \\
 \end{align}\]

Step 3: Multiply by the reciprocal.

\[\frac{{\left( {2r + 3} \right)\left( {r + 6} \right)}}{{\left( {3r - 2} \right)\left( {r - 6} \right)}} \div \frac{{\left( {3r + 2} \right)\left( {r + 6} \right)}}{{\left( {r - 6} \right)\left( {r + 1} \right)}} = \frac{{\left( {2r + 3} \right)\left( {r + 6} \right)}}{{\left( {3r - 2} \right)\left( {r - 6} \right)}} \cdot \frac{{\left( {r - 6} \right)\left( {r + 1} \right)}}{{\left( {3r + 2} \right)\left( {r + 6} \right)}}\]

Step 4
: Identify any new NPVs.

\[\begin{align}
 3r + 2 &\ne 0 \\
  r &\ne -\frac{2}{3} \\
 \end{align}\]
\[\begin{align}
 r + 6 &\ne 0 \\
 r &\ne -6 \\
  \\
 \end{align}\]

Step 5
: Simplify.

\[\begin{align}
 \frac{{\left( {2r + 3} \right)\left( {r + 6} \right)}}{{\left( {3r - 2} \right)\left( {r - 6} \right)}} \div \frac{{\left( {3r + 2} \right)\left( {r + 6} \right)}}{{\left( {r - 6} \right)\left( {r + 1} \right)}} &= \frac{{\left( {2r + 3} \right) {\color{red} \cancel {\color{#444} \left( {r + 6} \right)}}}}{{\left( {3r - 2} \right) {\color{red} \cancel {\color{#444} \left( {r - 6} \right)}}}} \cdot \frac{{{\color{red} \cancel {\color{#444} \left( {r - 6} \right)}}\left( {r + 1} \right)}}{{\left( {3r + 2} \right) {\color{red} \cancel {\color{#444} \left( {r + 6} \right)}}}} \\
  &= \frac{{\left( {2r + 3} \right)\left( {r + 1} \right)}}{{\left( {3r - 2} \right)\left( {3r + 2} \right)}},\thinspace r \ne \pm 6, -1, \pm \frac{2}{3} \\
 \end{align}\]