Example 9
Completion requirements
Example 9 |
A bus travels approximately \(325\) km from Calgary to Edmonton. If the time
it takes the bus to travel is \(\frac{300}{x - 2}\) hours, determine
the average speed of the bus for the trip. Recall the formula for speed
is \(s = \frac{d}{t}\).

Substitute the given expressions for \(d\) and \(t\) into the formula for speed.
The speed of the bus is \(\frac{{13\left( {x - 2} \right)}}{{12}} {\rm{km/h}}, \thinspace x \ne 2\).
\[\begin{align}
s &= \frac{d}{t}{\rm{ or }} \thinspace s = d \div t \\
s &= 325 \div \frac{{300}}{{x - 2}}, \thinspace x \ne 2 \\
s &= 325 \cdot \frac{{x - 2}}{{300}} \\
s &= \frac{{13\left( {x - 2} \right)}}{{12}} \\
\end{align}\]
s &= \frac{d}{t}{\rm{ or }} \thinspace s = d \div t \\
s &= 325 \div \frac{{300}}{{x - 2}}, \thinspace x \ne 2 \\
s &= 325 \cdot \frac{{x - 2}}{{300}} \\
s &= \frac{{13\left( {x - 2} \right)}}{{12}} \\
\end{align}\]
The speed of the bus is \(\frac{{13\left( {x - 2} \right)}}{{12}} {\rm{km/h}}, \thinspace x \ne 2\).