Example  1

Simplify the expression \(\frac{{3x}}{{4\left( {x - 3} \right)}} - \frac{{2x}}{{x - 3}} \cdot \frac{5}{{4x}}\). Identify any non-permissible values.


Step 1: Identify the NVPs.

\(\begin{align}
 x - 3 &\ne 0 \\
 x &\ne 3 \\
 \end{align}\)
\(x \ne 0\)

Step 2: Determine which operation to perform first, and simplify.

According to BEDMAS, multiplication comes before subtraction.

\[\begin{align}
 {\color{red}\frac{3x}{4\left( {x - 3} \right)}}  - \frac{2x}{x - 3} \cdot \frac{5}{4x} &= {\color{red}\frac{3x}{4\left( {x - 3} \right)}} - \frac{10x}{4x\left( {x - 3} \right)} \\
  &= {\color{red}\frac{3x}{4\left( {x - 3} \right)}} - \frac{5}{2\left( {x - 3} \right)}
 \end{align}\]

Step 3: Determine the next operation to be performed, and simplify.

The next operation (and last one) is subtraction.

\[\begin{align}
\frac{3x}{4\left( {x - 3} \right)} - \frac{5\left({\color{red}2}\right)}{\left[ {2\left( {x - 3} \right)} \right]\left( {\color{red}2}\right)} &= \frac{3x}{4\left( {x - 3} \right)} - \frac{10}{4\left( {x - 3} \right)} \\
  &= \frac{3x - 10}{4\left( {x - 3} \right)} ,\thinspace x \ne 0,\thinspace 3   \end{align}\]