Example  2


 

 Multimedia



Simplify the expression \(\frac{{c + 2}}{{c^2 - c - 20}} - \frac{{3c^2 - 14c - 5}}{{2c^2 + 7c + 6}} \div \frac{{c^2 - c - 20}}{{2c + 3}}\).  Identify any non-permissible values.


Step 1: Factor all polynomials to determine the non-permissible values.

\[\frac{{c + 2}}{{c^2 - c - 20}} - \frac{{3c^2 - 14c - 5}}{{2c^2 + 7c + 6}} \div \frac{{c^2 - c - 20}}{{2c + 3}} = \frac{{c + 2}}{{\left( {c - 5} \right)\left( {c + 4} \right)}} - \frac{{\left( {3c + 1} \right)\left( {c - 5} \right)}}{{\left( {2c + 3} \right)\left( {c + 2} \right)}} \div \frac{{\left( {c - 5} \right)\left( {c + 4} \right)}}{{2c + 3}}\]

NPVs:

\(\begin{align}
 c - 5 &\ne 0 \\
 c &\ne 5
 \end{align}\)
\(\begin{align}
 c + 4 &\ne 0 \\
 c &\ne - 4
 \end{align}\)
\(\begin{align}
 2c + 3 &\ne 0 \\
 c &\ne -\frac{3}{2}
 \end{align}\)
\(\begin{align}
 c + 2 &\ne 0 \\
 c &\ne - 2
 \end{align}\)

Step 2: Determine which operation to perform first, and simplify.

According to BEDMAS, division comes before subtraction.

\[\frac{{c + 2}}{{\left( {c - 5} \right)\left( {c + 4} \right)}} - {\color{red}\frac{{\left( {3c + 1} \right)\left( {c - 5} \right)}}{{\left( {2c + 3} \right)\left( {c + 2} \right)}} \div \frac{{\left( {c - 5} \right)\left( {c + 4} \right)}}{{2c + 3}}} = \frac{{c + 2}}{{\left( {c - 5} \right)\left( {c + 4} \right)}} - {\color{red}\frac{{\left( {3c + 1} \right)\left( {c - 5} \right)}}{{\left( {2c + 3} \right)\left( {c + 2} \right)}} \cdot \frac{2c + 3}{\left( {c - 5} \right)\left( {c + 4} \right)}}\]

Pause, and identify any new NPVs:

There are no new NPVs.

Continue simplifying.

\[\begin{align}
 \frac{{c + 2}}{{\left( {c - 5} \right)\left( {c + 4} \right)}} - {\color{red}\frac{{\left( {3c + 1} \right) \cancel {\color{#444}\left( {c - 5} \right)}}}{{\cancel {\color{#444}\left( {2c + 3} \right)}\left( {c + 2} \right)}}} \cdot \frac{{{\color{red} \cancel {\color{#444}\left( {2c + 3} \right)}}}}{{{\color{red} \cancel {\color{#444}\left( {c - 5} \right)}\left( {c + 4} \right)}}} &= \frac{{c + 2}}{{\left( {c - 5} \right)\left( {c + 4} \right)}} - {\color{red}\frac{{3c + 1}}{{c + 2}} \cdot \frac{1}{{c + 4}}} \\
  &= \frac{{c + 2}}{{\left( {c - 5} \right)\left( {c + 4} \right)}} - {\color{red}\frac{{3c + 1}}{{\left( {c + 2} \right)\left( {c + 4} \right)}}} \\
 \end{align}\]

Step 3: Perform the last operation, and simplify.

Subtraction is the last operation.

\[\begin{align}
 \frac{{\left( {c + 2} \right) {\color{red}\left( {c + 2} \right)}}}{{\left( {c - 5} \right)\left( {c + 4} \right) {\color{red}\left( {c + 2} \right)}}} - \frac{{\left( {3c + 1} \right) {\color{red}\left( {c - 5} \right)}}}{{\left( {c + 2} \right)\left( {c + 4} \right) {\color{red}\left( {c - 5} \right)}}} &= \frac{{\left( {c + 2} \right)^2 }}{{\left( {c - 5} \right)\left( {c + 4} \right)\left( {c + 2} \right)}} - \frac{{\left( {3c + 1} \right)\left( {c - 5} \right)}}{{\left( {c - 5} \right)\left( {c + 4} \right)\left( {c + 2} \right)}} \\
  &= \frac{{c^2 + 4c + 4}}{{\left( {c - 5} \right)\left( {c + 4} \right)\left( {c + 2} \right)}} - \frac{{3c^2 - 14c - 5}}{{\left( {c - 5} \right)\left( {c + 4} \right)\left( {c + 2} \right)}} \\
  &= \frac{{c^2 + 4c + 4 - \left( {3c^2 - 14c - 5} \right)}}{{\left( {c - 5} \right)\left( {c + 4} \right)\left( {c + 2} \right)}} \\
  &= \frac{{ - 2c^2 + 18c + 9}}{{\left( {c - 5} \right)\left( {c + 4} \right)\left( {c + 2} \right)}},\thinspace c \ne - 4,\thinspace - 2, \thinspace -\frac{3}{2}, \thinspace 5 \\
 \end{align}\]