Example  3

Simplify the expression \(\left[ {\frac{{x - 2}}{{5x + 1}} - \frac{{x - 2}}{{3x - 2}}} \right] \div \frac{{x^2 - x - 2}}{{x + 1}}\).  Identify any non-permissible values. 


Step 1: Identify the NPVs.

\(\begin{align}
 5x + 1 &\ne 0 \\
 x &\ne - \frac{1}{5} \\  \end{align}\)
\(\begin{align}
 3x - 2 &\ne 0 \\
 x \ne &\frac{2}{3} \\
 \end{align}\)
\(\begin{align}
 x + 1 &\ne 0 \\
 x &\ne - 1 \\
 \end{align}\)

Step 2: Determine which operation to perform first, and simplify.

According to BEDMAS, the subtraction in brackets must be done first.

\[\begin{align}
 \left[ {\color{red} {\frac{{\left( {x - 2} \right)}}{{\left( {5x + 1} \right)}} - \frac{{\left( {x - 2} \right)}}{{\left( {3x - 2} \right)}}}} \right] \div \frac{{x^2 - x - 2}}{{x + 1}} &= \left[ {\color{red}{\frac{{\left( {x - 2} \right)\left( {3x - 2} \right)}}{{\left( {5x + 1} \right)\left( {3x - 2} \right)}} - \frac{{\left( {x - 2} \right)\left( {5x + 1} \right)}}{{\left( {3x - 2} \right)\left( {5x + 1} \right)}}}} \right] \div \frac{{x^2 - x - 2}}{{x + 1}} \\
  &= \left[ {\color{red}{\frac{{\left( {x - 2} \right)\left( {3x - 2} \right) - \left( {x - 2} \right)\left( {5x + 1} \right)}}{{\left( {5x + 1} \right)\left( {3x - 2} \right)}}}} \right] \div \frac{{x^2 - x - 2}}{{x + 1}} \\
  &= \left[ {\color{red}{\frac{{\left( {x - 2} \right)\left[ {3x - 2 - \left( {5x + 1} \right)} \right]}}{{\left( {5x + 1} \right)\left( {3x - 2} \right)}}}} \right] \div \frac{{x^2 - x - 2}}{{x + 1}} \\
  &= \left[ {\color{red}{\frac{{\left( {x - 2} \right)\left( {3x - 2 - 5x - 1} \right)}}{{\left( {5x + 1} \right)\left( {3x - 2} \right)}}}} \right] \div \frac{{x^2 - x - 2}}{{x + 1}} \\
  &= \left[ {\color{red}{\frac{{\left( {x - 2} \right)\left( { - 2x - 3} \right)}}{{\left( {5x + 1} \right)\left( {3x - 2} \right)}}}} \right] \div \frac{{x^2 - x - 2}}{{x + 1}} \\
 \end{align}\]


Notice the use of grouping (removing a factor of \(x - 2\) from each term in the numerator) to help in the simplification  process.

Step 3: Perform the last operation, and simplify.

Division is the last operation.

\[\begin{align}
 \left[ {\frac{{\left( {x - 2} \right)\left( { - 2x - 3} \right)}}{{\left( {5x + 1} \right)\left( {3x - 2} \right)}}} \right] \div \frac{{x^2 - x - 2}}{{x + 1}} &= \frac{{\left( {x - 2} \right)\left( { - 2x - 3} \right)}}{{\left( {5x + 1} \right)\left( {3x - 2} \right)}} \cdot \frac{{x + 1}}{{x^2 - x - 2}} \\
  &= \frac{{\left( {x - 2} \right)\left( { - 2x - 3} \right)}}{{\left( {5x + 1} \right)\left( {3x - 2} \right)}}\cdot \frac{{x + 1}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \\
 \end{align}\]

Pause, and identify any new NPVs.

\(\begin{align}
 x - 2 &\ne 0 \\
 x &\ne 2 \\
 \end{align}\)


Continue simplifying.

\[\begin{align}
 \frac{{{\color{red} \cancel {\color{#444}(x - 2)}}\left( { - 2x - 3} \right)}}{{\left( {5x + 1} \right)\left( {3x - 2} \right)}} \cdot \frac{{{\color{red} \cancel {\color{#444}(x + 1)}}}}{{{\color{red} \cancel {\color{#444}(x - 2) } \cancel {\color{#444}(x + 1)}}}} &= \frac{{ - \left( {2x + 3} \right)}}{{\left( {5x + 1} \right)\left( {3x - 2} \right)}} \\
  &= - \frac{{2x + 3}}{{\left( {5x + 1} \right)\left( {3x - 2} \right)}}, \thinspace x \ne - 1, - \frac{1}{5},\frac{2}{3}, \thinspace 2 \\
 \end{align}\]