Example  1

Verify that \(v = 3\) is an extraneous root for the rational equation \(\frac{{4v^2 - 11v - 3}}{{v^2 - 5v + 6}} = 13\).


To verify that \(v = 3\) is an extraneous root, substitute \(3\) for \(v\) in the equation, and show that the left side does not equal the right side.


Left Side Right Side
\[\begin{array}{r}
 \frac{{4v^2 - 11v - 3}}{{v^2 - 5v + 6}} \\
 \frac{{4\left( 3 \right)^2 - 11\left( 3 \right) - 3}}{{\left( 3 \right)^2 - 5\left( 3 \right) + 6}} \\
 \frac{{4\left( 9 \right) - 33 - 3}}{{9 - 15 + 6}} \\
 \frac{{36 - 36}}{{15 - 15}} \\
 \frac{0}{0} \\
 {\rm{undefined}} \\
 \end{array}\]

\(13\)
LS \(\ne\) RS\(\hspace{30pt}\)