Example  1

Solve the rational equation \(\frac{2}{3} = \frac{{4x + 1}}{{5x}}\). Identify any non-permissible values, and verify the solution(s).


Step 1: Identify any non-permissible values.

\(x \ne 0\)

Step 2: Determine the lowest common denominator, and multiply both sides by this expression.

The LCD is \(15x\).

\[\begin{align}
 \left( {\frac{2}{3}} \right)\left( {15x} \right) &= \left( {\frac{{4x + 1}}{{5x}}} \right)\left( {15x} \right) \\
 \left( 2 \right)\left( {5x} \right) &= \left( {4x + 1} \right)\left( 3 \right) \\
 10x &= 12x + 3 \\
 \end{align}\]

Step 3: Solve for \(x\).

\(\begin{align}
 10x &= 12x + 3 \\
  -3 &= 2x \\
  -\frac{3}{2} &= x \\
 \end{align}\)


Step 4: Verify for \(x = -\frac{3}{2}\).


Left Side Right Side
\[\frac{2}{3}\]
\[\begin{array}{l}
 \frac{{4x + 1}}{{5x}} \\
 \frac{{4\left( { - \frac{3}{2}} \right) + 1}}{{5\left( { - \frac{3}{2}} \right)}} \\
 \frac{{ - 6 + 1}}{{ - \frac{{15}}{2}}} \\
 \frac{{ - 5}}{{ - \frac{{15}}{2}}} \\
 5 \times \frac{2}{{15}} \\
 \frac{2}{3} \\
 \end{array}\]

\(\hspace {25pt}\) LS = RS

Because the left side equals the right side, and \(x = -\frac{3}{2}\) is not an NPV, \(x = -\frac{3}{2}\) is the solution to the equation.