Example 2
Completion requirements
Example 2 |
Solve the rational equation \(\frac{2}{{x^2 - 16}} + \frac{1}{{x + 4}} = \frac{3}{{x - 4}}\). Identify any non-permissible values, and verify the solution(s).
Step 1: Factor all polynomials to determine the non-permissible values and the lowest common denominator.
NPVs:
LCD: \((x - 4)(x + 4)\)
Step 2: Multiply each term by the LCD.
Step 3: Solve for \(x\).
\(\begin{align}
x - 2 &= 3x + 12 \\
- 14 &= 2x \\
- 7 &= x \\
\end{align}\)
Step 4: Verify for \(x = -7\).
Because the left side equals the right side, and \(x = -7\) is not an NPV, \(x = -7\) is the solution to the equation.
\[\begin{align}
\frac{2}{{x^2 - 16}} + \frac{1}{{x + 4}} &= \frac{3}{{x - 4}} \\
\frac{2}{{\left( {x - 4} \right)\left( {x + 4} \right)}} + \frac{1}{{x + 4}} &= \frac{3}{{x - 4}} \\
\end{align}\]
\frac{2}{{x^2 - 16}} + \frac{1}{{x + 4}} &= \frac{3}{{x - 4}} \\
\frac{2}{{\left( {x - 4} \right)\left( {x + 4} \right)}} + \frac{1}{{x + 4}} &= \frac{3}{{x - 4}} \\
\end{align}\]
NPVs:
\(\begin{align}
x - 4 &\ne 0 \\
x &\ne 4 \\
\end{align}\)
x - 4 &\ne 0 \\
x &\ne 4 \\
\end{align}\)
\(\begin{align}
x + 4 &\ne 0 \\
x &\ne -4 \\
\end{align}\)
x + 4 &\ne 0 \\
x &\ne -4 \\
\end{align}\)
LCD: \((x - 4)(x + 4)\)
Step 2: Multiply each term by the LCD.
\[\begin{align}
\left[ {\frac{2}{{{\color{red}\cancel {\color{#444}{(x - 4)(x + 4)}}}}}} \right] {\color{red}\cancel {\color{#444}{(x - 4)(x + 4)}}} + \left[ {\frac{1}{{{\color{red}\cancel{\color{#444}{x + 4}}}}}} \right]\left( {x - 4} \right) {\color{red}\cancel {\color{#444}{\left ( x + 4 \right)}}} &= \left[ {\frac{3}{{{\color{red}\cancel{\color{#444}{x - 4}}}}}} \right]{\color{red}\cancel{\color{#444}{\left(x - 4\right)}}}\left( {x + 4} \right) \\
2 + \left( {x - 4} \right) &= 3\left( {x + 4} \right) \\
2 + x - 4 &= 3x + 12 \\
x - 2 &= 3x + 12 \\
\end{align}\]
\left[ {\frac{2}{{{\color{red}\cancel {\color{#444}{(x - 4)(x + 4)}}}}}} \right] {\color{red}\cancel {\color{#444}{(x - 4)(x + 4)}}} + \left[ {\frac{1}{{{\color{red}\cancel{\color{#444}{x + 4}}}}}} \right]\left( {x - 4} \right) {\color{red}\cancel {\color{#444}{\left ( x + 4 \right)}}} &= \left[ {\frac{3}{{{\color{red}\cancel{\color{#444}{x - 4}}}}}} \right]{\color{red}\cancel{\color{#444}{\left(x - 4\right)}}}\left( {x + 4} \right) \\
2 + \left( {x - 4} \right) &= 3\left( {x + 4} \right) \\
2 + x - 4 &= 3x + 12 \\
x - 2 &= 3x + 12 \\
\end{align}\]
Step 3: Solve for \(x\).
\(\begin{align}
x - 2 &= 3x + 12 \\
- 14 &= 2x \\
- 7 &= x \\
\end{align}\)
Step 4: Verify for \(x = -7\).
Left Side | Right Side |
---|---|
\[\begin{array}{r} \frac{2}{{x^2 - 16}} + \frac{1}{{x + 4}} \\ \frac{2}{{\left( { - 7} \right)^2 - 16}} + \frac{1}{{\left( { - 7} \right) + 4}} \\ \frac{2}{{49 - 16}} + \frac{1}{{ - 3}} \\ \frac{2}{{33}} - \frac{1}{3} \\ \frac{2}{{33}} - \frac{{11}}{{33}} \\ \frac{{ - 9}}{{33}} \\ - \frac{3}{{11}} \\ \end{array}\] |
\[\begin{array}{l} \frac{3}{{x - 4}} \\ \frac{3}{{\left( { - 7} \right) - 4}} \\ \frac{3}{{ - 11}} \\ - \frac{3}{{11}} \\ \end{array}\] |
LS = RS \(\hspace{33pt}\) |
Because the left side equals the right side, and \(x = -7\) is not an NPV, \(x = -7\) is the solution to the equation.