Example  4

Solve the rational equation \(\frac{{2w - 2}}{{w^2 - 1}} = \frac{2}{{w + 2}}\).  Identify any non-permissible values, and verify the solution(s).


Step 1: Factor all polynomials, and identify the NPVs.

\[\begin{align}
 \frac{{2w - 2}}{{w^2 - 1}} &= \frac{2}{{w + 2}} \\
 \frac{{2\left( {w - 1} \right)}}{{\left( {w - 1} \right)\left( {w + 1} \right)}} &= \frac{2}{{w + 2}} \\
 \end{align}\]
\(\begin{align}
 w - 1 &\ne 0 \\
 w &\ne 1 \\
 \end{align}\)
\(\begin{align}
 w + 1 &\ne 0 \\
 w &\ne -1 \\
 \end{align}\)
\(\begin{align}
 w + 2 &\ne 0 \\
 w &\ne -2 \\
 \end{align}\)


Step 2: Simplify, and determine the LCD.

\[\begin{align}
 \frac{{2{\color{red}\cancel{\color{#444} {\left(w - 1\right)}}}}}{{{\color{red}\cancel {\color{#444}{\left(w - 1\right)}}}\left( {w + 1} \right)}} &= \frac{2}{{w + 2}} \\
 \frac{2}{{w + 1}} &= \frac{2}{{w + 2}} \\
 \end{align}\]

LCD: \((w + 1)(w + 2)\)

Step 3
: Multiply each term by the LCD and solve.

\[\begin{align}
 \left[ {\frac{2}{{{\color{red}\cancel{\color{#444}{w + 1}}}}}} \right]{\color{red}\cancel{\color{#444}{\left( {w + 1} \right)}}}\left( {w + 2} \right) &= \left[ {\frac{2}{{{\color{red}\cancel{\color{#444}{w + 2}}}}}} \right]\left( {w + 1} \right) {\color{red}\cancel{\color{#444}{\left( {w + 2} \right)}}}\\
 2\left( {w + 2} \right) &= 2\left( {w + 1} \right) \\
 2w + 4 &= 2w + 2 \\
 4 &= 2 \\
 \end{align}\]


The result is a false statement, which tells you that there are no values for the variable that satisfy the equation. Also note that the variable was eliminated while solving this equation. As a result, there is no solution to this equation.